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Motivation

Computing in the presence of noise

E.g. n sensors make noisy measurements of signals x1, . . . , xn

x1

Controller

x2 xn

Controller adaptively probes one of the sensors to make a measurement.

Goal: Compute a function f(x1, . . . , xn) from noisy measurements

Applications
Fault tolerance
Active ranking
Recommendation systems
⋯
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Problem Statement (Threshold Function)

Let x = (x1, . . . , xn) ∈ {0, 1}n.
Threshold function: For x ∈ {0, 1}n,

THk(x) =
⎧⎪⎪⎨⎪⎪⎩

1 if ∑n
i=1 xi ≥ k,

0 otherwise.

Note: TH1(x) = OR(x) and THn/2(x) =MAJORITY(x).

Goal: Find an estimate of THk(x) using noisy bit readings.

At ith time step, submit query Ui = j for some j ∈ [n].
Receive noisy response

Yi = xUi
⊕Zi,

where Zi ∼ Bern(p), for some fixed and known p < 1/2.
After M queries, compute estimate T̂Hk of THk(x).

Question: How many queries are needed to find T̂Hk s.t.

sup
x

P(T̂Hk ≠ THk(x)) ≤ δ?
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Special case: OR function (k = 1)
Ω(n log n) queries are necessary for non-adaptive query strategies123

Θ(n log(1/δ)) queries are both necessary and sufficient for adaptive query strategies4
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3P. Gács and A. Gál. “Lower bounds for the complexity of reliable Boolean circuits with noisy gates”. In: IEEE Trans. Inf. Theory 40.2 (1994),
pp. 579–583.

4U. Feige, P. Raghavan, D. Peleg, and E. Upfal. “Computing with noisy information”. In: SIAM Journal on Computing 23.5 (1994), pp. 1001–1018.

nadim.ghaddar@utoronto.ca Noisy Computing of the Threshold Function Remarkable 2025 4 / 13



Main Result

Theorem (Informal)
Suppose k ≤ n/2 and δ = o(1). The optimal query complexity M satisfies

(1 − o(1))
(n − k) log k

δ

DKL(p∣∣1 − p)
≤ E[M] ≤ (1 + o(1))

n log k
δ

DKL(p∣∣1 − p)
,

where DKL(p∣∣1 − p) is the KL divergence between Bern(p) and Bern(1 − p).

Bounds are tight when k = o(n). E.g., when k = 1 (OR function),

E[M] = (1 ± o(1))
n log 1

δ

DKL(p∣∣1 − p)

Multiplicative gap is ≤ 2 when k = Θ(n). E.g., when k = n/2 (MAJORITY function)

Comparison to existing bounds5: for k = n1/3, δ = n−1/4, and p = 1/3,
Our result: E[M] ≈ 2.5247n log n
Existing bounds: 0.0506n log n ≤ E[M] ≤ 433.7518n log n

5U. Feige, P. Raghavan, D. Peleg, and E. Upfal. “Computing with noisy information”. In: SIAM Journal on Computing 23.5 (1994), pp. 1001–1018.
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Lower Bound Proof Sketch

Challenge: need to consider arbitrary adaptive querying strategies

Idea: For any querying strategy A, consider an enhanced version A′
A′ accesses more information about each bit compared to A
Analysis of A′ is more tractable

Lower bound on the number of queries for A′ implies lower bound for A
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Enhanced Querying Strategy A′

Key Fact

Fix ϵ = o(1). For any querying strategy A that uses (n−k−ϵn) log(k/δ)
DKL(p∣∣1−p)

queries, the number
of bits that are queried for more than α ∶= log(k/δ)

DKL(p∣∣1−p)
times is at most β ∶= n − k − ϵn.

Enhanced querying strategy A′ consists of two phases6:
1 Non-adaptive phase: Query each bit for α times
2 Adaptive phase: Choose β bits adaptively, and noiselessly obtain their values

Any strategy A that uses (n−k−ϵn) log(k/δ)
DKL(p∣∣1−p)

queries can be simulated using A′.

It suffices to show that Pe(A′) > δ.

6U. Feige, P. Raghavan, D. Peleg, and E. Upfal. “Computing with noisy information”. In: SIAM Journal on Computing 23.5 (1994), pp. 1001–1018.
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Non-Adaptive Phase

Non-adaptive phase: Query each bit for α = log(k/δ)
DKL(p∣∣1−p)

times

View this phase through a balls and bins model
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Adaptive Phase

Adaptive phase: choose β ∶= n − k − ϵn bits adaptively, and reveal values noiselessly

Genie provides free information through a random process
Demonstration: when x has k ones

0 αpα (1 − p)α

If the chosen bin contains a heavy ball (w.p. ω(δ)), genie reveals k − 1 heavy
balls (all except one in the chosen bin)

In this case, probability of not finding the hidden ball is ≥ ϵ
This implies that Pe(A

′) = ω(ϵδ) > δ
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Upper Bound Proof Sketch

Upper bound: E[M] ≤ (1 + o(1)) n log(k/δ)
DKL(p∣∣1−p)

Querying strategy that uses at most (1 + o(1)) n log(k/δ)
DKL(p∣∣1−p)

queries on average

When k = o(n):
Subroutine CheckBit7: Repeatedly query a single bit until its value is known with
confidence level γ
Subroutine MaxHeapTH8: Existing querying strategy for computing THk(x).

Input x Checkbit
on each bit

S = {i ∈ [n] ∶
CheckBit(xi) = 1}

∣S∣ ≥ θ?

Yes

No

Output 1

Output
MaxHeapTH(S)

k ≪ θ ≪ n
where

7Y. Gu and Y. Xu. “Optimal Bounds for Noisy Sorting”. In: Proceedings of the 55th Annual ACM Symposium on Theory of Computing (STOC).
Orlando, FL, USA, 2023, 1502–1515.

8U. Feige, P. Raghavan, D. Peleg, and E. Upfal. “Computing with noisy information”. In: SIAM Journal on Computing 23.5 (1994), pp. 1001–1018.
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k ≪ θ ≪ n
where

7Y. Gu and Y. Xu. “Optimal Bounds for Noisy Sorting”. In: Proceedings of the 55th Annual ACM Symposium on Theory of Computing (STOC).
Orlando, FL, USA, 2023, 1502–1515.

8U. Feige, P. Raghavan, D. Peleg, and E. Upfal. “Computing with noisy information”. In: SIAM Journal on Computing 23.5 (1994), pp. 1001–1018.
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Beyond the Threshold Function

Noisy Comparison Model: When x ∈ Rn,
At kth time step, query (Uk, Vk) ≜ (xi, xj) for i ≠ j.
Receive noisy response Yk = 1{Uk<Vk}

⊕Zk, where Zk ∼ Bern(p).

Function Description Optimal Query Complexity (δ = o(1))

MAX9 Input: x ∈ Rn

Output: max. of x
n log 1

δ

DKL(p∥1 − p)

SEARCH10

Input: sorted x ∈ Rn,
w ∈ R
Output: index i s.t.
xi < w < xi+1

log n

1 −H(p)
+

log 1
δ

DKL(p∥1 − p)

SORT1112
Input: x ∈ Rn

Output: sorted version
of x

[ 1
1 −H(p)

+ 1
DKL(p∥1 − p)

]n log n

9B. Zhu, Z. Wang, N. Ghaddar, J. Jiao, and L. Wang. “Noisy Computing of the OR and MAX Functions”. In: IEEE Journal on Selected Areas in
Information Theory 5 (2024), pp. 302–313.

10M. V. Burnashev. “Data Transmission over a Discrete Channel with Feedback. Random Transmission Time”. In: Problemy Peredachi Informatsii 12.4
(1976), pp. 10–30.

11Z. Wang, N. Ghaddar, B. Zhu, and L. Wang. “Variable-Length Insertion-Based Noisy Sorting”. In: Proc. IEEE Internat. Symp. Inf. Theory. 2023,
pp. 1782–1787.

12Y. Gu and Y. Xu. “Optimal Bounds for Noisy Sorting”. In: Proceedings of the 55th Annual ACM Symposium on Theory of Computing (STOC).
Orlando, FL, USA, 2023, 1502–1515.

nadim.ghaddar@utoronto.ca Noisy Computing of the Threshold Function Remarkable 2025 11 / 13



Beyond the Threshold Function

Noisy Comparison Model: When x ∈ Rn,
At kth time step, query (Uk, Vk) ≜ (xi, xj) for i ≠ j.
Receive noisy response Yk = 1{Uk<Vk}

⊕Zk, where Zk ∼ Bern(p).

Function Description Optimal Query Complexity (δ = o(1))

MAX9 Input: x ∈ Rn

Output: max. of x
n log 1

δ

DKL(p∥1 − p)

SEARCH10

Input: sorted x ∈ Rn,
w ∈ R
Output: index i s.t.
xi < w < xi+1

log n

1 −H(p)
+

log 1
δ

DKL(p∥1 − p)

SORT1112
Input: x ∈ Rn

Output: sorted version
of x

[ 1
1 −H(p)

+ 1
DKL(p∥1 − p)

]n log n

9B. Zhu, Z. Wang, N. Ghaddar, J. Jiao, and L. Wang. “Noisy Computing of the OR and MAX Functions”. In: IEEE Journal on Selected Areas in
Information Theory 5 (2024), pp. 302–313.

10M. V. Burnashev. “Data Transmission over a Discrete Channel with Feedback. Random Transmission Time”. In: Problemy Peredachi Informatsii 12.4
(1976), pp. 10–30.

11Z. Wang, N. Ghaddar, B. Zhu, and L. Wang. “Variable-Length Insertion-Based Noisy Sorting”. In: Proc. IEEE Internat. Symp. Inf. Theory. 2023,
pp. 1782–1787.

12Y. Gu and Y. Xu. “Optimal Bounds for Noisy Sorting”. In: Proceedings of the 55th Annual ACM Symposium on Theory of Computing (STOC).
Orlando, FL, USA, 2023, 1502–1515.

nadim.ghaddar@utoronto.ca Noisy Computing of the Threshold Function Remarkable 2025 11 / 13



Final Remarks

Optimal bounds for noisy computing: THk, MAX, SEARCH, SORT functions

Bounds on optimal query complexity for computing THk(x):

(1 − o(1))
(n − k) log k

δ

DKL(p∣∣1 − p)
≤ E[M] ≤ (1 + o(1))

n log k
δ

DKL(p∣∣1 − p)
.

Tight when k = o(n)
Multiplicative gap is at most 2 when k = Θ(n)
Recent work by Gu, Li and Xu13: Tight bounds for any k

(1 − o(1))
n log k

δ

DKL(p∣∣1 − p)
≤ E[M] ≤ (1 + o(1))

n log k
δ

DKL(p∣∣1 − p)
.

Future work
p→ 0 or p→ 1/2? δ = Θ(1)?
Other binary functions (e.g.: PARITY)
. . .

13Y. Gu, X. Li, and Y. Xu. Tight Bounds for Noisy Computation of High-Influence Functions, Connectivity, and Threshold. 2025. arXiv: 2502.04632.
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Any Questions?

nadim.ghaddar@utoronto.ca Noisy Computing of the Threshold Function Remarkable 2025 13 / 13


