Noisy Computing of the Threshold Function

Nadim Ghaddar

University of Toronto

Joint work with Ziao Wang, Banghua Zhu, and Lele Wang

Remarkable 2025, Vector Institute Toronto, Canada

March 4, 2025

nadim.ghaddar@utoronto.ca

Noisy Computing of the Threshold Function

イロト 不得 トイヨト イヨト

Motivation

• Computing in the presence of noise

2

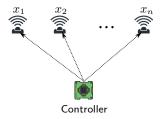
2/13

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

Motivation

• Computing in the presence of noise

E.g. n sensors make noisy measurements of signals x_1, \ldots, x_n



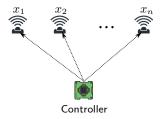
Controller adaptively probes one of the sensors to make a measurement.

• Goal: Compute a function $f(x_1, \ldots, x_n)$ from noisy measurements

Motivation

• Computing in the presence of noise

E.g. n sensors make noisy measurements of signals x_1, \ldots, x_n



Controller adaptively probes one of the sensors to make a measurement.

- Goal: Compute a function $f(x_1, \ldots, x_n)$ from noisy measurements
- Applications
 - Fault tolerance
 - Active ranking
 - Recommendation systems
 - • • •

Problem Statement (Threshold Function)

- Let $\mathbf{x} = (x_1, \dots, x_n) \in \{0, 1\}^n$.
- Threshold function: For $\mathbf{x} \in \{0,1\}^n$,

$$\mathsf{TH}_k(\mathbf{x}) = \begin{cases} 1 & \text{if } \sum_{i=1}^n x_i \ge k, \\ 0 & \text{otherwise.} \end{cases}$$

Note: $TH_1(\mathbf{x}) = OR(\mathbf{x})$ and $TH_{n/2}(\mathbf{x}) = MAJORITY(\mathbf{x})$.

• Goal: Find an estimate of $TH_k(\mathbf{x})$ using noisy bit readings.

Problem Statement (Threshold Function)

- Let $\mathbf{x} = (x_1, \dots, x_n) \in \{0, 1\}^n$.
- Threshold function: For $\mathbf{x} \in \{0,1\}^n$,

$$\mathsf{TH}_k(\mathbf{x}) = \begin{cases} 1 & \text{ if } \sum_{i=1}^n x_i \ge k, \\ 0 & \text{ otherwise.} \end{cases}$$

Note: $TH_1(x) = OR(x)$ and $TH_{n/2}(x) = MAJORITY(x)$.

- Goal: Find an estimate of $TH_k(\mathbf{x})$ using noisy bit readings.
 - At *i*th time step, submit query $U_i = j$ for some $j \in [n]$.
 - Receive noisy response

$$Y_i = x_{U_i} \oplus Z_i,$$

where $Z_i \sim \text{Bern}(p)$, for some fixed and known p < 1/2. • After M queries, compute estimate $\widehat{\text{TH}}_k$ of $\text{TH}_k(\mathbf{x})$.

Problem Statement (Threshold Function)

- Let $\mathbf{x} = (x_1, \dots, x_n) \in \{0, 1\}^n$.
- Threshold function: For $\mathbf{x} \in \{0,1\}^n$,

$$\mathsf{TH}_k(\mathbf{x}) = \begin{cases} 1 & \text{ if } \sum_{i=1}^n x_i \ge k, \\ 0 & \text{ otherwise.} \end{cases}$$

Note: $TH_1(x) = OR(x)$ and $TH_{n/2}(x) = MAJORITY(x)$.

- Goal: Find an estimate of $TH_k(\mathbf{x})$ using noisy bit readings.
 - At *i*th time step, submit query U_i = j for some j ∈ [n].
 - Receive noisy response

$$Y_i = x_{U_i} \oplus Z_i,$$

where $Z_i \sim \text{Bern}(p)$, for some fixed and known p < 1/2. • After M queries, compute estimate $\widehat{\text{TH}}_k$ of $\text{TH}_k(\mathbf{x})$.

• Question: How many queries are needed to find $\widehat{\mathsf{TH}}_k$ s.t.

$$\sup_{\mathbf{x}} \mathsf{P}(\widehat{\mathsf{TH}}_k \neq \mathsf{TH}_k(\mathbf{x})) \leq \delta?$$

Related Work

- Special case: OR function (k = 1)
 - $\Omega(n \log n)$ queries are necessary for non-adaptive query strategies¹²³
 - $\Theta(n \log(1/\delta))$ queries are both necessary and sufficient for adaptive query strategies⁴

¹R. L. Dobrushin and S. I. Ortyukov. "Lower bound for the redundancy of self-correcting arrangements of unreliable functional elements". In: *Problemy* Peredachi Informatsii 13.1 (1977), pp. 82–89.

²N. Pippenger, G. D. Stamoulis, and J. N. Tsitsiklis. "On a lower bound for the redundancy of reliable networks with noisy gates". In: IEEE Trans. Inf. Theory 37.3 (1991), pp. 639–643.

³ P. Gács and A. Gál. "Lower bounds for the complexity of reliable Boolean circuits with noisy gates". In: IEEE Trans. Inf. Theory 40.2 (1994), pp. 579–583.

⁴ U. Feige, P. Raghavan, D. Peleg, and E. Upfal. "Computing with noisy information". In: SIAM Journal on Computing 23.5 (1994), pp. 1001–1018) 🔍 🔿

Related Work

- Special case: OR function (k = 1)
 - $\Omega(n \log n)$ queries are necessary for non-adaptive query strategies¹²³
 - $\Theta(n \log(1/\delta))$ queries are both necessary and sufficient for adaptive query strategies⁴
- General k
 - Best known results: $\Theta(n \log(k/\delta))$ queries are both necessary and sufficient⁴

¹R. L. Dobrushin and S. I. Ortyukov. "Lower bound for the redundancy of self-correcting arrangements of unreliable functional elements". In: Problemy Peredachi Informatsii 13.1 (1977), pp. 82–89.

²N. Pippenger, G. D. Stamoulis, and J. N. Tsitsiklis. "On a lower bound for the redundancy of reliable networks with noisy gates". In: IEEE Trans. Inf. Theory 37.3 (1991), pp. 639–643.

³P. Gács and A. Gál. "Lower bounds for the complexity of reliable Boolean circuits with noisy gates". In: IEEE Trans. Inf. Theory 40.2 (1994), pp. 579–583.

⁴ U. Feige, P. Raghavan, D. Peleg, and E. Upfal. "Computing with noisy information". In: SIAM Journal on Computing 23.5 (1994), pp. 1001–1018) 🔍 🔿

Related Work

- Special case: OR function (k = 1)
 - $\Omega(n \log n)$ queries are necessary for non-adaptive query strategies¹²³
 - $\Theta(n \log(1/\delta))$ queries are both necessary and sufficient for adaptive query strategies⁴
- General k
 - Best known results: $\Theta(n \log(k/\delta))$ queries are both necessary and sufficient⁴

Exact dependence on p is not known in prior work.

¹R. L. Dobrushin and S. I. Ortyukov. "Lower bound for the redundancy of self-correcting arrangements of unreliable functional elements". In: *Problemy* Peredachi Informatsii 13.1 (1977), pp. 82–89.

²N. Pippenger, G. D. Stamoulis, and J. N. Tsitsiklis. "On a lower bound for the redundancy of reliable networks with noisy gates". In: IEEE Trans. Inf. Theory 37.3 (1991), pp. 639–643.

³P. Gács and A. Gál. "Lower bounds for the complexity of reliable Boolean circuits with noisy gates". In: IEEE Trans. Inf. Theory 40.2 (1994), pp. 579–583.

⁴ U. Feige, P. Raghavan, D. Peleg, and E. Upfal. "Computing with noisy information". In: SIAM Journal on Computing 23.5 (1994), pp. 1001–1018) 🔍 🔿

Main Result

Theorem (Informal)

Suppose $k \le n/2$ and $\delta = o(1)$. The optimal query complexity M satisfies

$$(1-o(1))\frac{(n-k)\log\frac{k}{\delta}}{D_{\mathrm{KL}}(p||1-p)} \leq \mathsf{E}[M] \leq (1+o(1))\frac{n\log\frac{k}{\delta}}{D_{\mathrm{KL}}(p||1-p)},$$

where $D_{KL}(p||1-p)$ is the KL divergence between Bern(p) and Bern(1-p).

⁵ U. Feige, P. Raghavan, D. Peleg, and E. Upfal. "Computing with noisy information". In: SIAM Journal on Computing 23.5 (1994), pp. 1001–1018) 🔍 (>

Main Result

Theorem (Informal)

Suppose $k \le n/2$ and $\delta = o(1)$. The optimal query complexity M satisfies

$$(1-o(1))\frac{(n-k)\log\frac{k}{\delta}}{D_{\mathrm{KL}}(p||1-p)} \leq \mathsf{E}[M] \leq (1+o(1))\frac{n\log\frac{k}{\delta}}{D_{\mathrm{KL}}(p||1-p)},$$

where $D_{KL}(p||1-p)$ is the KL divergence between Bern(p) and Bern(1-p).

• Bounds are tight when k = o(n). E.g., when k = 1 (OR function),

$$\mathsf{E}[M] = (1 \pm o(1)) \frac{n \log \frac{1}{\delta}}{D_{\mathrm{KL}}(p||1-p)}$$

• Multiplicative gap is ≤ 2 when $k = \Theta(n)$. E.g., when k = n/2 (MAJORITY function)

⁵U. Feige, P. Raghavan, D. Peleg, and E. Upfal. "Computing with noisy information". In: SIAM Journal on Computing 23.5 (1994), pp. 1001–1018) <

Main Result

Theorem (Informal)

Suppose $k \le n/2$ and $\delta = o(1)$. The optimal query complexity M satisfies

$$(1-o(1))\frac{(n-k)\log\frac{k}{\delta}}{D_{\mathrm{KL}}(p||1-p)} \leq \mathsf{E}[M] \leq (1+o(1))\frac{n\log\frac{k}{\delta}}{D_{\mathrm{KL}}(p||1-p)},$$

where $D_{KL}(p||1-p)$ is the KL divergence between Bern(p) and Bern(1-p).

• Bounds are tight when k = o(n). E.g., when k = 1 (OR function),

$$\mathsf{E}[M] = (1 \pm o(1)) \frac{n \log \frac{1}{\delta}}{D_{\mathrm{KL}}(p||1-p)}$$

- Multiplicative gap is ≤ 2 when $k = \Theta(n)$. E.g., when k = n/2 (MAJORITY function)
- Comparison to existing bounds⁵: for $k = n^{1/3}$, $\delta = n^{-1/4}$, and p = 1/3,
 - Our result: $E[M] \approx 2.5247n \log n$
 - Existing bounds: $0.0506n\log n \leq \mathsf{E}[M] \leq 433.7518n\log n$

⁵U. Feige, P. Raghavan, D. Peleg, and E. Upfal. "Computing with noisy information". In: SIAM Journal on Computing 23.5 (1994), pp. 1001–1018) 🔍 (>

• Challenge: need to consider arbitrary adaptive querying strategies

< □ > < □ > < □ > < □ > < □ >

2

- Challenge: need to consider arbitrary adaptive querying strategies
- Idea: For any querying strategy \mathcal{A} , consider an enhanced version \mathcal{A}'
 - $\bullet \ {\cal A}'$ accesses more information about each bit compared to ${\cal A}$
 - Analysis of \mathcal{A}' is more tractable
- \bullet Lower bound on the number of queries for \mathcal{A}' implies lower bound for \mathcal{A}

Key Fact

Fix $\epsilon = o(1)$. For any querying strategy \mathcal{A} that uses $\frac{(n-k-\epsilon n)\log(k/\delta)}{D_{\mathrm{KL}}(p||1-p)}$ queries, the number of bits that are queried for more than $\alpha \coloneqq \frac{\log(k/\delta)}{D_{\mathrm{KL}}(p||1-p)}$ times is at most $\beta \coloneqq n-k-\epsilon n$.

⁶U. Feige, P. Raghavan, D. Peleg, and E. Upfal. "Computing with noisy information". In: SIAM Journal on Computing 23.5 (1994), pp. 1001–1018) 🔍 🔿

Key Fact

Fix $\epsilon = o(1)$. For any querying strategy \mathcal{A} that uses $\frac{(n-k-\epsilon n)\log(k/\delta)}{D_{\mathrm{KL}}(p||1-p)}$ queries, the number of bits that are queried for more than $\alpha \coloneqq \frac{\log(k/\delta)}{D_{\mathrm{KL}}(p||1-p)}$ times is at most $\beta \coloneqq n-k-\epsilon n$.

- Enhanced querying strategy \mathcal{A}' consists of two phases⁶:
 - **1** Non-adaptive phase: Query each bit for α times
 - **2** Adaptive phase: Choose β bits adaptively, and noiselessly obtain their values

⁶U. Feige, P. Raghavan, D. Peleg, and E. Upfal. "Computing with noisy information". In: SIAM Journal on Computing 23.5 (1994), pp. 1001–1018) 🔍 🔿

Key Fact

Fix $\epsilon = o(1)$. For any querying strategy \mathcal{A} that uses $\frac{(n-k-\epsilon n)\log(k/\delta)}{D_{\mathrm{KL}}(p||1-p)}$ queries, the number of bits that are queried for more than $\alpha \coloneqq \frac{\log(k/\delta)}{D_{\mathrm{KL}}(p||1-p)}$ times is at most $\beta \coloneqq n-k-\epsilon n$.

- Enhanced querying strategy \mathcal{A}' consists of two phases⁶:
 - **1** Non-adaptive phase: Query each bit for α times
 - **2** Adaptive phase: Choose β bits adaptively, and noiselessly obtain their values
- Any strategy \mathcal{A} that uses $\frac{(n-k-\epsilon n)\log(k/\delta)}{D_{\mathrm{KL}}(p||1-p)}$ queries can be simulated using \mathcal{A}' .

⁶U. Feige, P. Raghavan, D. Peleg, and E. Upfal. "Computing with noisy information". In: SIAM Journal on Computing 23.5 (1994); pp. 1001–1018) <

Key Fact

Fix $\epsilon = o(1)$. For any querying strategy \mathcal{A} that uses $\frac{(n-k-\epsilon n)\log(k/\delta)}{D_{\mathrm{KL}}(p||1-p)}$ queries, the number of bits that are queried for more than $\alpha \coloneqq \frac{\log(k/\delta)}{D_{\mathrm{KL}}(p||1-p)}$ times is at most $\beta \coloneqq n-k-\epsilon n$.

- Enhanced querying strategy \mathcal{A}' consists of two phases⁶:
 - **1** Non-adaptive phase: Query each bit for α times
 - **2** Adaptive phase: Choose β bits adaptively, and noiselessly obtain their values
- Any strategy \mathcal{A} that uses $\frac{(n-k-\epsilon n)\log(k/\delta)}{D_{\mathrm{KL}}(p||1-p)}$ queries can be simulated using \mathcal{A}' .
- It suffices to show that $P_e(\mathcal{A}') > \delta$.

⁶U. Feige, P. Raghavan, D. Peleg, and E. Upfal. "Computing with noisy information". In: SIAM Journal on Computing 23.5 (1994), pp. 1001–1018) 🔍 🔿

• Non-adaptive phase: Query each bit for $\alpha = \frac{\log(k/\delta)}{D_{\text{KL}}(p||1-p)}$ times

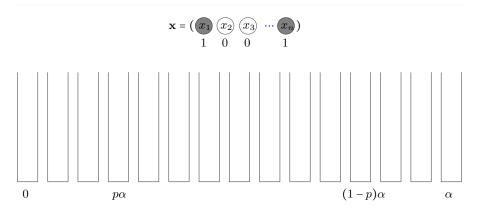
2

8/13

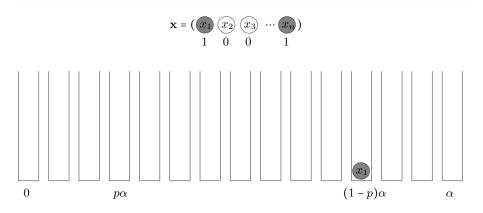
- Non-adaptive phase: Query each bit for $\alpha = \frac{\log(k/\delta)}{D_{\text{KL}}(p||1-p)}$ times
- View this phase through a balls and bins model

	4	< 🗗 🕨	< ≣ >	< ≣ >	-2	4) Q (4
nadim.ghaddar@utoronto.ca	Noisy Computing of the Threshold Function	F	Remarkab	le 2025		8/13

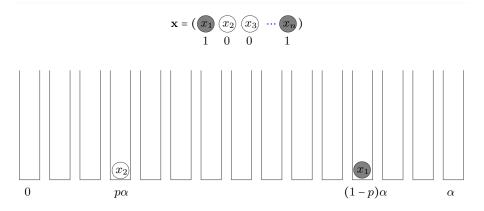
- Non-adaptive phase: Query each bit for $\alpha = \frac{\log(k/\delta)}{D_{\text{KL}}(p||1-p)}$ times
- View this phase through a balls and bins model



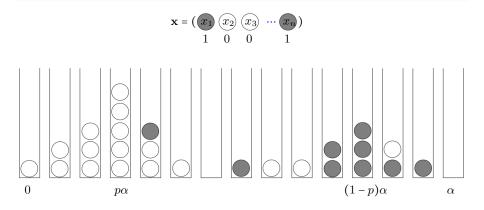
- Non-adaptive phase: Query each bit for $\alpha = \frac{\log(k/\delta)}{D_{\text{KL}}(p||1-p)}$ times
- View this phase through a balls and bins model



- Non-adaptive phase: Query each bit for $\alpha = \frac{\log(k/\delta)}{D_{\text{KL}}(p||1-p)}$ times
- View this phase through a balls and bins model

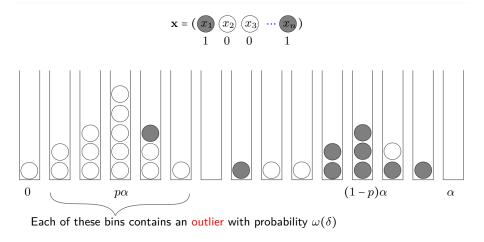


- Non-adaptive phase: Query each bit for $\alpha = \frac{\log(k/\delta)}{D_{\text{KL}}(p||1-p)}$ times
- View this phase through a balls and bins model



A (10) N (10)

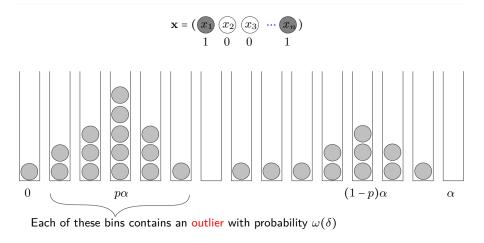
- Non-adaptive phase: Query each bit for $\alpha = \frac{\log(k/\delta)}{D_{\text{KL}}(p||1-p)}$ times
- View this phase through a balls and bins model



H 5

A (1) > A (2) > A

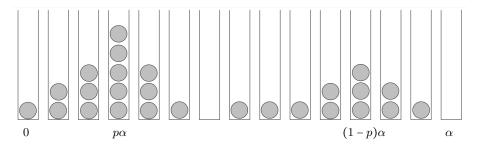
- Non-adaptive phase: Query each bit for $\alpha = \frac{\log(k/\delta)}{D_{\text{KL}}(p||1-p)}$ times
- View this phase through a balls and bins model



H 5

A (1) > A (2) > A

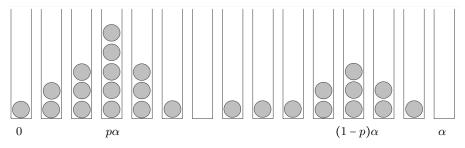
• Adaptive phase: choose $\beta := n - k - \epsilon n$ bits adaptively, and reveal values noiselessly



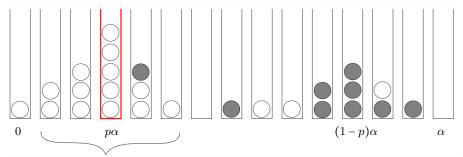
< □ > < □ > < □ > < □ > < □ >

2

- Adaptive phase: choose $\beta \coloneqq n k \epsilon n$ bits adaptively, and reveal values noiselessly
- Genie provides free information through a random process
- Demonstration: when \mathbf{x} has k ones



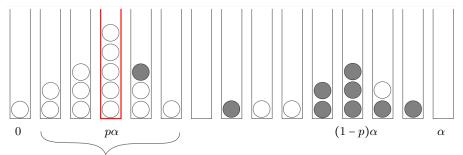
- Adaptive phase: choose $\beta \coloneqq n k \epsilon n$ bits adaptively, and reveal values noiselessly
- Genie provides free information through a random process
- Demonstration: when \mathbf{x} has k ones



Genie chooses one of these bins with probability proportional to the size of the bin

A (1) > A (2) > A

- Adaptive phase: choose $\beta \coloneqq n k \epsilon n$ bits adaptively, and reveal values noiselessly
- Genie provides free information through a random process
- Demonstration: when \mathbf{x} has k ones



Genie chooses one of these bins with probability proportional to the size of the bin

• If the chosen bin does not contain a heavy ball, genie reveals all k heavy balls

• • • • • • • • • • • •

- Adaptive phase: choose $\beta \coloneqq n k \epsilon n$ bits adaptively, and reveal values noiselessly
- Genie provides free information through a random process
- Demonstration: when \mathbf{x} has k ones

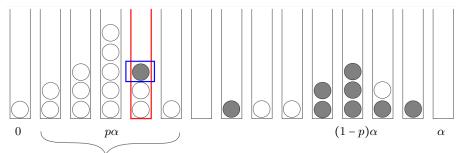


Genie chooses one of these bins with probability proportional to the size of the bin

• If the chosen bin does not contain a heavy ball, genie reveals all k heavy balls

• • • • • • • • • • • •

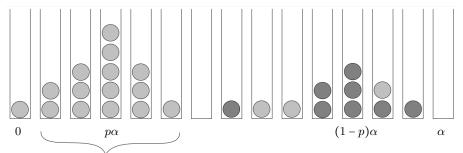
- Adaptive phase: choose $\beta \coloneqq n k \epsilon n$ bits adaptively, and reveal values noiselessly
- Genie provides free information through a random process
- Demonstration: when \mathbf{x} has k ones



Genie chooses one of these bins with probability proportional to the size of the bin

- If the chosen bin does not contain a heavy ball, genie reveals all k heavy balls
- If the chosen bin contains a heavy ball (w.p. $\omega(\delta)$), genie reveals k-1 heavy balls (all except one in the chosen bin)

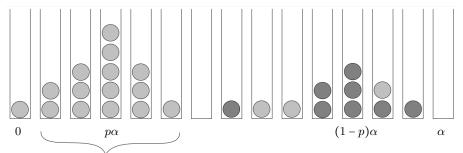
- Adaptive phase: choose $\beta \coloneqq n k \epsilon n$ bits adaptively, and reveal values noiselessly
- Genie provides free information through a random process
- Demonstration: when \mathbf{x} has k ones



Genie chooses one of these bins with probability proportional to the size of the bin

- If the chosen bin does not contain a heavy ball, genie reveals all k heavy balls
- If the chosen bin contains a heavy ball (w.p. $\omega(\delta)$), genie reveals k-1 heavy balls (all except one in the chosen bin)

- Adaptive phase: choose $\beta \coloneqq n k \epsilon n$ bits adaptively, and reveal values noiselessly
- Genie provides free information through a random process
- Demonstration: when \mathbf{x} has k ones



Genie chooses one of these bins with probability proportional to the size of the bin

- $\bullet\,$ If the chosen bin does not contain a heavy ball, genie reveals all k heavy balls
- If the chosen bin contains a heavy ball (w.p. $\omega(\delta)$), genie reveals k-1 heavy balls (all except one in the chosen bin)
 - In this case, probability of not finding the hidden ball is $\geq \epsilon$
 - This implies that $P_e(\mathcal{A}') = \omega(\epsilon \delta) > \delta$

・ロト ・ 同ト ・ ヨト ・ ヨト

Upper Bound Proof Sketch

- Upper bound: $\mathsf{E}[M] \leq (1 + o(1)) \frac{n \log(k/\delta)}{D_{\mathrm{KL}}(p||1-p)}$
- Querying strategy that uses at most $(1 + o(1)) \frac{n \log(k/\delta)}{D_{KL}(p||1-p)}$ queries on average

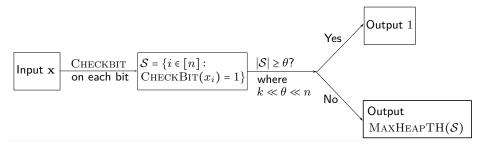
⁷Y. Gu and Y. Xu. "Optimal Bounds for Noisy Sorting". In: Proceedings of the 55th Annual ACM Symposium on Theory of Computing (STOC). Orlando, FL, USA, 2023, 1502–1515.

⁸U. Feige, P. Raghavan, D. Peleg, and E. Upfal. "Computing with noisy information". In: SIAM Journal on Computing 23.5 (1994), pp. 1001–1018) 🔍 🔿

Upper Bound Proof Sketch

• Upper bound:
$$\mathsf{E}[M] \le (1 + o(1)) \frac{n \log(k/\delta)}{D_{\mathrm{KL}}(p || 1 - p)}$$

- Querying strategy that uses at most $(1 + o(1)) \frac{n \log(k/\delta)}{D_{KL}(p||1-p)}$ queries on average
- When k = o(n):
 - Subroutine CHECKBIT⁷: Repeatedly query a single bit until its value is known with confidence level γ
 - Subroutine MAXHEAPTH⁸: Existing querying strategy for computing $TH_k(\mathbf{x})$.



⁷Y. Gu and Y. Xu. "Optimal Bounds for Noisy Sorting". In: Proceedings of the 55th Annual ACM Symposium on Theory of Computing (STOC). Orlando, FL, USA, 2023, 1502–1515.

⁸U. Feige, P. Raghavan, D. Peleg, and E. Upfal. "Computing with noisy information". In: SIAM Journal on Computing 23.5 (1994), pp. 1001–1018) 🔍 🔿

Beyond the Threshold Function

• Noisy Comparison Model: When $\mathbf{x} \in \mathbb{R}^n$,

- At kth time step, query $(U_k, V_k) \triangleq (x_i, x_j)$ for $i \neq j$.
- Receive noisy response $Y_k = \mathbb{1}_{\{U_k < V_k\}} \oplus Z_k$, where $Z_k \sim \text{Bern}(p)$.

⁹ B. Zhu, Z. Wang, N. Ghaddar, J. Jiao, and L. Wang. "Noisy Computing of the OR and MAX Functions". In: IEEE Journal on Selected Areas in Information Theory 5 (2024), pp. 302–313.

¹⁰ M. V. Burnashev. "Data Transmission over a Discrete Channel with Feedback. Random Transmission Time". In: Problemy Peredachi Informatsii 12.4 (1976), pp. 10–30.

¹¹ Z. Wang, N. Ghaddar, B. Zhu, and L. Wang. "Variable-Length Insertion-Based Noisy Sorting". In: Proc. IEEE Internat. Symp. Inf. Theory. 2023, pp. 1782–1787.

¹² Y. Gu and Y. Xu. "Optimal Bounds for Noisy Sorting". In: Proceedings of the 55th Annual ACM Symposium on Theory of Computing (STOC). Orlando, FL, USA, 2023, 1502–1515.

^{11/13}

Beyond the Threshold Function

• Noisy Comparison Model: When $\mathbf{x} \in \mathbb{R}^n$,

• At kth time step, query $(U_k, V_k) \triangleq (x_i, x_j)$ for $i \neq j$.

• Receive noisy response $Y_k = \mathbb{1}_{\{U_k < V_k\}} \oplus Z_k$, where $Z_k \sim \text{Bern}(p)$.

Function	Description	Optimal Query Complexity $(\delta = o(1))$
MAX ⁹	Input: $\mathbf{x} \in \mathbb{R}^n$ Output: max. of \mathbf{x}	$\frac{n\log \frac{1}{\delta}}{D_{KL}(p\ 1-p)}$
SEARCH ¹⁰	Input: sorted $\mathbf{x} \in \mathbb{R}^{n}$, $w \in \mathbb{R}$ Output: index i s.t. $x_{i} < w < x_{i+1}$	$\frac{\log n}{1 - H(p)} + \frac{\log \frac{1}{\delta}}{D_{KL}(p\ 1 - p)}$
SORT ¹¹¹²	Input: $\mathbf{x} \in \mathbb{R}^n$ Output: sorted version of \mathbf{x}	$\left[\frac{1}{1-H(p)} + \frac{1}{D_{KL}(p\ 1-p)}\right] n \log n$

⁹ B. Zhu, Z. Wang, N. Ghaddar, J. Jiao, and L. Wang. "Noisy Computing of the OR and MAX Functions". In: IEEE Journal on Selected Areas in Information Theory 5 (2024), pp. 302–313.

¹⁰ M. V. Burnashev. "Data Transmission over a Discrete Channel with Feedback. Random Transmission Time". In: Problemy Peredachi Informatsii 12.4 (1976), pp. 10–30.

¹¹ Z. Wang, N. Ghaddar, B. Zhu, and L. Wang. "Variable-Length Insertion-Based Noisy Sorting". In: Proc. IEEE Internat. Symp. Inf. Theory. 2023, pp. 1782–1787.

12 Y. Gu and Y. Xu. "Optimal Bounds for Noisy Sorting". In: Proceedings of the 55th Annual ACM Symposium on Theory of Computing (STOC). Orlando, FL, USA, 2023, 1502–1515.

Remarkable 2025

• Optimal bounds for noisy computing: TH_k, MAX, SEARCH, SORT functions

¹³ Y. Gu, X. Li, and Y. Xu. Tight Bounds for Noisy Computation of High-Influence Functions, Connectivity, and Threshold: 2025: arXiv: 2502.04632. 🔍 🔿

- Optimal bounds for noisy computing: TH_k, MAX, SEARCH, SORT functions
- Bounds on optimal query complexity for computing $\mathsf{TH}_k(\mathbf{x})$:

$$(1-o(1))\frac{(n-k)\log\frac{k}{\delta}}{D_{\mathrm{KL}}(p||1-p)} \leq \mathsf{E}[M] \leq (1+o(1))\frac{n\log\frac{k}{\delta}}{D_{\mathrm{KL}}(p||1-p)}.$$

- Tight when k = o(n)
- Multiplicative gap is at most 2 when $k = \Theta(n)$

¹³ Y. Gu, X. Li, and Y. Xu. Tight Bounds for Noisy Computation of High-Influence Functions, Connectivity, and Threshold: 2025: arXiv: 2502.04632. 🔍

- Optimal bounds for noisy computing: TH_k, MAX, SEARCH, SORT functions
- Bounds on optimal query complexity for computing $\mathsf{TH}_k(\mathbf{x})$:

$$(1-o(1))\frac{(n-k)\log\frac{k}{\delta}}{D_{\mathrm{KL}}(p||1-p)} \leq \mathsf{E}[M] \leq (1+o(1))\frac{n\log\frac{k}{\delta}}{D_{\mathrm{KL}}(p||1-p)}.$$

- Tight when k = o(n)
- Multiplicative gap is at most 2 when $k = \Theta(n)$
- Recent work by Gu, Li and Xu¹³: Tight bounds for any k

$$(1-o(1))\frac{n\log\frac{k}{\delta}}{D_{\mathrm{KL}}(p||1-p)} \leq \mathsf{E}[M] \leq (1+o(1))\frac{n\log\frac{k}{\delta}}{D_{\mathrm{KL}}(p||1-p)}.$$

¹³ Y. Gu, X. Li, and Y. Xu. Tight Bounds for Noisy Computation of High-Influence Functions, Connectivity, and Threshold: 2025: arXiv: 2502.04632. 🔍 🔿

- Optimal bounds for noisy computing: TH_k, MAX, SEARCH, SORT functions
- Bounds on optimal query complexity for computing $\mathsf{TH}_k(\mathbf{x})$:

$$(1-o(1))\frac{(n-k)\log\frac{k}{\delta}}{D_{\mathrm{KL}}(p||1-p)} \leq \mathsf{E}[M] \leq (1+o(1))\frac{n\log\frac{k}{\delta}}{D_{\mathrm{KL}}(p||1-p)}.$$

- Tight when k = o(n)
- Multiplicative gap is at most 2 when $k = \Theta(n)$
- Recent work by Gu, Li and Xu¹³: Tight bounds for any k

$$(1-o(1))\frac{n\log\frac{k}{\delta}}{D_{\mathrm{KL}}(p||1-p)} \leq \mathsf{E}[M] \leq (1+o(1))\frac{n\log\frac{k}{\delta}}{D_{\mathrm{KL}}(p||1-p)}.$$

- Future work
 - $p \to 0$ or $p \to 1/2$? $\delta = \Theta(1)$?
 - Other binary functions (e.g.: PARITY)
 - ...

¹³ Y. Gu, X. Li, and Y. Xu. Tight Bounds for Noisy Computation of High-Influence Functions, Connectivity, and Threshold. 2025. arXiv: 2502.04632. 🔍 🔿

Any Questions?

< □ > < □ > < □ > < □ > < □ >

2