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@ Shannon’s model

k n n rk
i (e 0 |2 i}

o Rate R=k/n
o Error probability P. = P{MP¥ # N*}

nghaddar@ucsd.edu Coding for Networks and Channels With Memory November 17, 2022 2/31



Point-to-Point Communication

@ Shannon’s model

k n n rk
i (e 0 |2 i}

o Rate R=k/n
o Error probability P. = P{MP¥ # N*}

P2P Channel Coding Theorem [Shannon 1948]
Channel p(y|x) with capacity C:

o A family of codes with vanishing P. exists only if R < C.
@ For any R < C, a family of codes with vanishing P. exists.
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Approach capacity for all binary point-to-point memoryless symmetric (BMS) channels!
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Road to Capacity
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Approach capacity for all binary point-to-point memoryless (BMS) channels!
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I. Coding over networks: A Lego-brick approach

o Gelfand—Pinsker coding, asymmetric channel coding
o Marton coding over broadcast channels
o Distributed lossy compression

e Coding over cloud radio access networks (C-RAN'’s)

Il. Joint channel estimation and polar coding over channels with memory

o Decoding algorithms that take into account the channel memory
o Pilot arrangement pattern that uses code structure

o Finite-state Markov channels

o Gauss-Markov channels

o Flat-fading channels
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Coding over Networks

Network information theory: Characterizes achievable rates for network communication.)

Rate of User 2

0 ~= Capacity region

~= Achievable bound
= Point-to-point scheme
722, Point-to-point codes

Rate of User 1

Goal: Construct low-complexity coding schemes over networks! )

nghaddar@ucsd.edu Coding for Networks and Channels With Memory November 17, 2022 6/31



Previous Work

@ Polar codes

o Slepian—-Wolf coding [Arikan 2012]

Lossy source coding of a symmetric source [Korada—Urbanke 2010]
Multiple access channels [Sasoglu—Telatar-Yeh 2010, Abbe-Telatar 2012]
Broadcast channels [Mondelli-Hassani—-Sason—Urbanke 2015]

Interference channels [Wang—Sasoglu 2014]

Relay channels [Wang 2015]

nghaddar@ucsd.edu Coding for Networks and Channels With Memory November 17, 2022 7/31



Previous Work

@ Polar codes

o Slepian—-Wolf coding [Arikan 2012]

Lossy source coding of a symmetric source [Korada—Urbanke 2010]
Multiple access channels [Sasoglu—Telatar-Yeh 2010, Abbe-Telatar 2012]
Broadcast channels [Mondelli-Hassani—-Sason—Urbanke 2015]

Interference channels [Wang—Sasoglu 2014]

Relay channels [Wang 2015]

@ Sparse graph codes with optimal decoding

o Lossy source coding of a symmetric source [Matsunaga—Yamamoto 2003]
o Gelfand—Pinsker and Wyner—Ziv coding [Muramatsu—Miyake 2010]

nghaddar@ucsd.edu Coding for Networks and Channels With Memory November 17, 2022 7/31



Previous Work

@ Polar codes

o Slepian—-Wolf coding [Arikan 2012]

Lossy source coding of a symmetric source [Korada—Urbanke 2010]
Multiple access channels [Sasoglu—Telatar-Yeh 2010, Abbe-Telatar 2012]
Broadcast channels [Mondelli-Hassani—-Sason—Urbanke 2015]

Interference channels [Wang—Sasoglu 2014]

Relay channels [Wang 2015]

@ Sparse graph codes with optimal decoding

o Lossy source coding of a symmetric source [Matsunaga—Yamamoto 2003]
o Gelfand—Pinsker and Wyner—Ziv coding [Muramatsu—Miyake 2010]

o Low-density generator matrix (LDGM) codes with message-passing decoding

o Lossy source coding of a symmetric source [Wainwright—Maneva 2005,
Aref-Macris—Vuffray 2015]

nghaddar@ucsd.edu Coding for Networks and Channels With Memory November 17, 2022 7/31



Previous Work

Polar codes

o Slepian—-Wolf coding [Arikan 2012]

Lossy source coding of a symmetric source [Korada—Urbanke 2010]
Multiple access channels [Sasoglu—Telatar-Yeh 2010, Abbe-Telatar 2012]
Broadcast channels [Mondelli-Hassani—-Sason—Urbanke 2015]

Interference channels [Wang—Sasoglu 2014]

Relay channels [Wang 2015]

@ Sparse graph codes with optimal decoding

o Lossy source coding of a symmetric source [Matsunaga—Yamamoto 2003]
o Gelfand—Pinsker and Wyner—Ziv coding [Muramatsu—Miyake 2010]

o Low-density generator matrix (LDGM) codes with message-passing decoding

o Lossy source coding of a symmetric source [Wainwright—Maneva 2005,
Aref-Macris—Vuffray 2015]

o Lattice codes
o Gaussian channels with Gaussian state (dirty paper coding) [Erez-Shamai—Zamir 2005]
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Lego-Brick Approach to Coding

Question: What properties should P2P codes satisfy to be used for lossy source coding? }

“Lego-brick” approach to coding

Assemble codes in one communication setting = A code in a different setting J

For a given coding problem,
@ What “Lego bricks” to assemble, and what properties should they satisfy?
@ How to assemble Lego bricks?

@ How do performance guarantees translate?
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@ Note: Linear code ensembles can only achieve capacity of symmetric channels!

@ Basic Lego Bricks:

—>

H > —

¢

—>

© ©6 ¢ 0 ¢

P2P code (H, ¢) for BMS channel p(y|z)
Parity-check matrix H, decoder ¢
Dimension k, blocklength n
Probability of error €

RNG

iid
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o Random dither

o Notation: WLOG, let H = [A  B] where B is nonsingular, and define

o Note: f[{
s
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Example: Slepian—Wolf Problem

o Slepian-Wolf problem p(x,y)

Yy” n <oy did
(X", Y™) ~ p(z,y)
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X" M X" Decoder v

PV = P{X" £ X"}
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Example: P2P code — Slepian—Wolf code [Wang—Kim 2015]

Lemma
1) “Codifying”: id

X" N Bern(1/2) = X"@HX"~ Unif(C).J
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Example: P2P code — Slepian—Wolf code [Wang—Kim 2015]

Lemma
1) “Codifying”: i _ ~ _
X" X Bern(1/2) = X" @ HX" ~ Unif(C).

~ e
HX" DN N
7N }i{, 7N
Sy iid n . b 7S U
X" % Bern(1 /z)agg_ C™ ~ Unif(C) i \1/ i
N
2) “Symmetrization”:
Lemma [Chen et al. 2009]
If V.~ Bern(1/2) 1L (X,Y), then p(y,v|z) := px,y(x G v,y) is symmetric J
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Example: P2P code — Slepian—Wolf code [Wang—Kim 2015]

Lemma
1) “Codifying”: i _ ~ _
X" X Bern(1/2) = X" ® HX" ~ Unif(C).

~ e
HX" PN
7N 4}&{, 7N
on iid n : VoS U
X" % Bern(1 /z>‘$_ C™ ~ Unif(C) i \1/ i
N
2) “Symmetrization”:
Lemma [Chen et al. 2009]
If V.~ Bern(1/2) 1L (X,Y), then p(y,v|z) := px,y(x G v,y) is symmetric J

n iid
X p(z:)_, p(ylr) —— v P is symmetric under

yn id Bern(1/2).....,é W((y,v)) =@vol)
v
X" % Bern(1/2) ——{ p(y, v|z) — Y, V")
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Example: P2P code — Slepian—Wolf code [Wang—Kim 2015]

Lemma
1) “Codifying”: i _ ~ _
X" X Bern(1/2) = X" @ HX" ~ Unif(C).

~ e
HX" BN
7N }i{, 7N
Sy iid n . b 7S U
X" % Bern(1 /z)agg_ C™ ~ Unif(C) i \1/ i
N
2) “Symmetrization”:
Lemma [Chen et al. 2009]
If V.~ Bern(1/2) 1L (X,Y), then p(y,v|z) := px,y(x G v,y) is symmetric J

P is symmetric under
m((y,v)) = (y,v @ 1)

P is the “symmetrized
channel” of p(z,y)

nghaddar@ucsd.edu Coding for Networks and Channels With Memory November 17, 2022 11/31



Example: P2P code — Slepian—Wolf code [Wang—Kim 2015]

o Slepian-Wolf problem p(x,y)

iid
X"~ p(e) plylz) yr
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v Bern(1/2)----->é
X X Bern(1/2) p(y, v|z) ym,ve)
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Example: P2P code — Slepian—Wolf code [Wang—Kim 2015]

o Slepian-Wolf problem p(x,y)

p(ylz) ye
v Bern(l/2)----->@
X" ——ply, vla)—= (V" V")

AX" & HV" = HX".oq
X

(ne—I 4 (YY", V"o HV" & HX™)
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Example: P2P code — Slepian—Wolf code [Wang—Kim 2015]

o Slepian-Wolf problem p(x,y)

vl Bern(1/2)----->$
xn
A

AX" & HV" = HX".oq
X

C:fn<_

YTL

(Y" V'@ HV" & HX")

o Coding scheme: (H, ¢) is a (k,n) code for p with error probability €
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Example: P2P code — Slepian—Wolf code [Wang—Kim 2015]

o Slepian-Wolf problem p(x,y)

vl Bern(1/2)----->$
xn
A

AX" & HV" = HX".oq
X

p(ylz) ¥e

C:fn<_

é (Y™, V" ® HV" & HX")

o Coding scheme: (H, ¢) is a (k,n) code for p with error probability €

Theorem

RSW _ n—k

PESW:e
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Example: P2P code — Slepian—Wolf code [Wang—Kim 2015]

o Slepian-Wolf problem p(x,y)
X7 p(ylz) v

vl Bern(1/2)----->$

X" —— 2y, vlx) (ym,vm

AX" & HV" = HX".oq
X

(ne—I 4 (YY", V"o HV" & HX™)

o Coding scheme: (H, ¢) is a (k,n) code for p with error probability €

sw
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From Slepian—Wolf to Coding over Networks

e This talk:

P2P Code for i
[ BMS Channel ]—{ Slepian—Wolf Code]
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From Slepian—Wolf to Coding over Networks

@ This talk:
Properties

[ IF3>§/|PSCCohde forI '—{ Slepian—Wolf COde] Linearity
anne Error Probability
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Decoding Distance

@ “Shaping property” of a decoding function
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Decoding Distance

@ “Shaping property” of a decoding function
@ P2P code (H, ¢) for BMS channel p(y|x)

Y™ i p(y) ply) = % > ply|x)
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Decoding Distance

@ “Shaping property” of a decoding function
@ P2P code (H, ¢) for BMS channel p(y|x)
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Decoding Distance

@ “Shaping property” of a decoding function
@ P2P code (H, ¢) for BMS channel p(y|x)

n iid
YY" ~ply)—d ¢

L xn p(y) == %Zp(ylw)

Question: How “far” is ¢ from

X" =o(Y") |

the memoryless channel p(w|y)7)
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Decoding Distance

@ “Shaping property” of a decoding function
@ P2P code (H, ¢) for BMS channel p(y|x)

n iid
Y™ ~ply)—o ¢

L xn p(y) == %Zp(ylw)

Question: How “far” is ¢ from

X" =o(Y") |

the memoryless channel p(m|y)7)

@ g(z™,y™): distribution of (X", Y™)
p(z™,y™): i.i.d. distribution according to 1p(y|x)

nghaddar@ucsd.edu Coding

for Networks and Channels With Memory November 17, 2022

14 /31



Decoding Distance

@ “Shaping property” of a decoding function
@ P2P code (H, ¢) for BMS channel p(y|x)

n iid
Y™ ~ply)—o ¢

L xn p(y) == %Zp(ylw)

Question: How “far” is ¢ from

X" =o(Y") |

the memoryless channel p(m|y)7)

@ g(z™,y™): distribution of (X", Y™)
p(z™,y™): i.i.d. distribution according to 1p(y|x)

Decoding distance § £ % Z ‘q(mn»yn) —p(=",y")
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Decoding Distance

@ “Shaping property” of a decoding function
@ P2P code (H, ¢) for BMS channel p(y|x)

n iid
Y™ ~ply)—o ¢

L xn ply) == %Zp(ylw)

Question: How “far” is ¢ from

X" =o¢(Y") |

the memoryless channel p(m|y)7J

@ g(z™,y™): distribution of (X", Y™)
p(z™,y™): i.i.d. distribution according to 1p(y|x)

Decoding distance § £ % Z ‘q(mn»yn) —p(=",y")

n _gn
™Yy

Total variation distance dv (p, q)

o Necessary & sufficient condition for vanishing 6: R >1— H(X|Y)
o E.g., random codes [Bennett et. al 2002], polar codes [Korada—Urbanke 2010]
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Nested Linear Codes

@ Linear codes C1, C2 s.t. C2 C Cy

cl_.{

coset of C1___, {

cosets of Ca

o 2172 cosets of Cy within a coset of Cy
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Nested Linear Codes

@ Linear codes C1, C2 s.t. C2 C Cy

cl_.{

coset of C1___, {

cosets of Co

o 21752 cosets of Cp within a coset of Cy

@ Applied to Gelfand—Pinsker & Marton coding [Padakandla—Pradhan 2011]

o Coset of C;: uniformly chosen and shared between encoder and decoder
o Coset shift of Co within C1: indexed by message (k1 — k2 bits)
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Nested Linear Codes

@ Linear codes C1, C2 s.t. C2 C Cy

cl_.{ —C

coset of C1___,
(shared) «coset of Ca

(indexed by message)

o 2F17F2 cosets of C» within a coset of Cy
@ Applied to Gelfand—Pinsker & Marton coding [Padakandla—Pradhan 2011]

o Coset of C;: uniformly chosen and shared between encoder and decoder

o Coset shift of Co within C1: indexed by message (k1 — k2 bits)

o Encoder: Finds a sequence in coset of Co that has a desired distribution

o Decoder: Finds a coset shift that includes a sequence having a desired distribution

= Joint typicality encoding and decoding
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Nested Linear Codes

@ Linear codes C1, C2 s.t. C2 C Cy

cl_.{ —C

coset of C1___,
(shared) «coset of Ca
(indexed by message)

o 2F17F2 cosets of C» within a coset of Cy
@ Applied to Gelfand—Pinsker & Marton coding [Padakandla—Pradhan 2011]

o Coset of C;: uniformly chosen and shared between encoder and decoder

o Coset shift of Co within C1: indexed by message (k1 — k2 bits)

o Encoder: Finds a sequence in coset of Co that has a desired distribution

o Decoder: Finds a coset shift that includes a sequence having a desired distribution

= Joint typicality encoding and decoding

H .
o Note: We can choose Hi, Hs s.t. Hy = { 1] for some matrix @
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P2P Code + Slepian—Wolf Code — Asymmetric Channel Code

o Goal: Code for asymmetric channel p(y|x)

@ Approach: Target p(z) ~ Bern(a) for some given a.

@ Lego bricks:
1. (k2,n) P2P code (Ha, ¢2) for BSC(a) with decoding distance §

U™ Bern(1/2) 7 27
> P2
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P2P Code + Slepian—Wolf Code — Asymmetric Channel Code

o Goal: Code for asymmetric channel p(y|x)

@ Approach: Target p(z) ~ Bern(a) for some given a.

@ Lego bricks:
1. (k2,n) P2P code (Ha, ¢2) for BSC(a) with decoding distance §

U™ % Bern(1/2) 1 27 X"
1 P2

drv (qun,zn, [[DSBS(a)) =6 = drv (gxn»,[]Bern(a)) <6
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P2P Code + Slepian—Wolf Code — Asymmetric Channel Code

o Goal: Code for asymmetric channel p(y|x)

@ Approach: Target p(z) ~ Bern(a) for some given a.

@ Lego bricks:

1. (k2,n) P2P code (Ha, ¢2) for BSC(«a) with decoding distance §
2. (n — k1,n) Slepian-Wolf code (H1, ¢1) for p(z,y) with error probability €

3. Two codes are nested s.t. Ho = Iél .
0
v U o AN, &4

Mk1—k2 192 T

° Vln—kl iid Bern(1/2) is shared between encoder and decoder

o M*17F2 is the message
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o Goal: Code for asymmetric channel p(y|x)

@ Approach: Target p(z) ~ Bern(a) for some given a.

@ Lego bricks:

1. (k2,n) P2P code (Ha, ¢2) for BSC(«a) with decoding distance §
2. (n — k1,n) Slepian-Wolf code (H1, ¢1) for p(z,y) with error probability €

3. Two codes are nested s.t. Ho = Iél .
C™ ~ Unif(Cs)
0
v U EAND. S
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o YTk iid Bern(1/2) is shared between encoder and decoder
o M*17F2 is the message

o UMK Bern(1/2)
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P2P Code + Slepian—Wolf Code — Asymmetric Channel Code

o Goal: Code for asymmetric channel p(y|x)

@ Approach: Target p(z) ~ Bern(a) for some given a.

@ Lego bricks:

1. (k2,n) P2P code (Ha, ¢2) for BSC(«a) with decoding distance §
2. (n — k1,n) Slepian-Wolf code (H1, ¢1) for p(z,y) with error probability €

3. Two codes are nested s.t. Ho = Iél .
C™ ~ Unif(Ca)
0
v U o AN, &4
MRk : 192

o YTk iid Bern(1/2) is shared between encoder and decoder
o M*17F2 is the message

o UM Bern(1/2) = drv (¢x»,[[Bern(a)) <4d

nghaddar@ucsd.edu Coding for Networks and Channels With Memory November 17, 2022 16 /31



P2P Code + Slepian—Wolf Code — Asymmetric Channel Code

o Goal: Code for asymmetric channel p(y|x)
@ Approach: Target p(z) ~ Bern(a) for some given a.

@ Lego bricks:
1. (k2,n) P2P code (Ha, ¢2) for BSC(«a) with decoding distance §
2. (n — k1,n) Slepian-Wolf code (H1, ¢1) for p(z,y) with error probability €

3. Two codes are nested s.t. Ho = Iél .
C™ ~ Unif(Cs)
0
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@ Approach: Target p(z) ~ Bern(a) for some given a.
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o Goal: Code for asymmetric channel p(y|x)
@ Approach: Target p(z) ~ Bern(a) for some given a.
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1. (k2,n) P2P code (Ha, ¢2) for BSC(«a) with decoding distance §
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P2P Code + Slepian—Wolf Code — Asymmetric Channel Code

o Goal: Code for asymmetric channel p(y|x)
@ Approach: Target p(z) ~ Bern(a) for some given a.

@ Lego bricks:
1. (k2,n) P2P code (Ha, ¢2) for BSC(«a) with decoding distance §
2. (n — k1,n) Slepian-Wolf code (H1, ¢1) for p(z,y) with error probability €

3. Two codes are nested s.t. Ho = Iél .

" Codifying”

RNG|

0 V3
Vn,kl Un VAL bed
S e I A e g

o YTk iid Bern(1/2) is shared between encoder and decoder

'

o M*17F2 is the message
Ul Bern(1/2) = drv (¢x»,[[Bern(a)) <4d
o HiX" =y "
Coding for Networks and Channels With Memory November 17, 2022 16 /31



P2P Code + Slepian—Wolf Code — Asymmetric Channel Code

o Goal: Code for asymmetric channel p(y|x)
@ Approach: Target p(z) ~ Bern(a) for some given a.

@ Lego bricks:
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P2P Code + Slepian—Wolf Code — Asymmetric Channel Code

@ Goal: Code for asymmetric channel p(y|x)

o Approach: Target p(z) ~ Bern(«) for some given «.

@ Lego bricks:
1. (k2,n) P2P code (H2, ¢2) for BSC(«) with decoding distance §
2. (n — k1,n) Slepian-Wolf code (H1, ¢1) for p(z,y) with error probability e

3. Two codes are nested s.t. Ho = [}S .
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0 Z4 Hy —~
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o V%1 % Bern(1/2) is shared between encoder and decoder
1
o MF=F2 is the message
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P2P Code + Slepian—Wolf Code — Asymmetric Channel Code

@ Goal: Code for asymmetric channel p(y|x)

o Approach: Target p(x) ~ Bern(a) for some given a.

@ Lego bricks:
1. (k2,n) P2P code (H2, ¢2) for BSC(«) with decoding distance §
2. (n — k1,n) Slepian-Wolf code (H1, ¢1) for p(z,y) with error probability e

3. Two codes are nested s.t. Ho = [}S .

. Asymmetric Asymmetric
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iid
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P2P Code + Slepian—Wolf Code — Asymmetric Channel Code

@ Goal: Code for asymmetric channel p(y|x)

o Approach: Target p(z) ~ Bern(«) for some given «.

@ Lego bricks:

1. (k2,n) P2P code (H2, ¢2) for BSC(«) with decoding distance §
2. (n — k1,n) Slepian-Wolf code (H1, ¢1) for p(z,y) with error probability e

3. Two codes are nested s.t. Ho =

0
Vlnfk,l
MFE1—k2

Asymmetric
Channel
Encoder

Xn

iid

n—kj
Wi

o MF=F2 is the message

U™ % Bern(1/2)
° Han — ‘/lnfkl

=

p(ylz)
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Channel Ak —ke
Decoder >

~ Bern(1/2) is shared between encoder and decoder

drv (gxn,]]Bern(a)) < 4§

Theorem

R = ki—ke
P.<e+d
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Rate Achievability

@ 3 a sequence of Slepian—-Wolf codes for p(x,y) s.t. € — 0 if and only if

n—k’l

> H(X|Y)

n
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Rate Achievability

@ 3 a sequence of Slepian—-Wolf codes for p(x,y) s.t. € — 0 if and only if

n—k’l

> H(X|Y)

n
o 3 a sequence of P2P codes for BSC(«) s.t. & — 0 if and only if

%>17H((1):17H(X)
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Rate Achievability

@ 3 a sequence of Slepian—-Wolf codes for p(x,y) s.t. € — 0 if and only if

n—k’l

> H(X|Y)

n

o 3 a sequence of P2P codes for BSC(«) s.t. & — 0 if and only if

%>17H((1):17H(X)

o Rate R = ®1-%2 can be made arbitrarily close to I(X;Y) = H(X) — H(X|Y).
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Gelfand—Pinsker Coding

@ Channel with state S™ available noncausally only at the encoder

Sn
y" A*
| ple,s) ] € -
Coding for Networks and Channels With Memory

5™ % p(s)

Encoder f, Decoder &
Rate R =k/n

P. = P{M" # M*}
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Gelfand—Pinsker Coding

@ Channel with state S™ available noncausally only at the encoder

sm S % p(s)
J, Encoder f, Decoder &

y" A* -
L p(ylz, s) 5 - . Rate R =k/n

P. = P{M"* # M*}

o [Gelfand—Pinsker 1980]: 3 a code (f,&) with vanishing P. if

R < max (I(X;Y) — I(X;5))

p(z|s)
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Gelfand—Pinsker Coding

@ Channel with state S™ available noncausally only at the encoder

sm S % p(s)
J, Encoder f, Decoder &

y" A* -
L p(ylz, s) 5 - . Rate R =k/n

P. = P{M"* # M*}

o [Gelfand—Pinsker 1980]: 3 a code (f,&) with vanishing P. if

R < max (I(X;Y) — I(X;5))

p(z|s)
@ Approach: Target a conditional distribution p(z|s)

@ This completely defines p(z,s) = p(s)p(z|s)
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P2P Code + Slepian—Wolf Code — Gelfand—Pinsker Code

@ Lego bricks:
1. (k2,n) P2P code (Ha, ¢2) with decoding distance ¢ for

f)(s,v\m) = pX7S($®U,S)

Sn

ur s Bern(l/Q!y—E z"
—|<]52
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P2P Code + Slepian—Wolf Code — Gelfand—Pinsker Code

@ Lego bricks:
1. (k2,n) P2P code (Ha, ¢2) with decoding distance § for p is the “symmetrized

(s, v|z) £ px,s(z®v,s) channel” of p(x, s)

Sn

ur s Bern(l/Q!y—E z"
—|<]52
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P2P Code + Slepian—Wolf Code — Gelfand—Pinsker Code

@ Lego bricks:
1. (k2,n) P2P code (Ha, ¢2) with decoding distance § for p is the “symmetrized

(s, v|z) £ px,s(z®v,s) channel” of p(x, s)

Xn :¢2(Sn7Un)@Un)

Lemma

drv (gxn,sn, [ p(w,8)) <6 J
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@ Lego bricks:
1. (k2,n) P2P code (Ha, ¢2) with decoding distance § for p is the “symmetrized

(s, v|z) £ px,s(z®v,s) channel” of p(x, s)
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P2P Code + Slepian—Wolf Code — Gelfand—Pinsker Code

@ Lego bricks:
1. (k2,n) P2P code (Ha, ¢2) with decoding distance § for p is the “symmetrized

(s, v|z) £ px,s(z®v,s) channel” of p(x, s)
2. (n — k1, n) Slepian-Wolf code (H1, ¢1) with error probability €

p(x,y) = p(z,9)ply|z,s)

3. Two codes are nested s.t. Ho = [Iél}
Sn
0
V]n—k-q U’n ¢ an Xn
MFE1—k2 122 T
o YTk B Bern(1/2) is shared between encoder and decoder

o M*17*2 is the message
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@ Lego bricks:
1. (k2,n) P2P code (Ha, ¢2) with decoding distance § for B is the “symmetrized

(s, v|z) £ px,s(z®v,s) channel” of p(x, s)
2. (n — k1, n) Slepian-Wolf code (H1, ¢1) with error probability €

p(x,y) = p(z,9)ply|z,s)

3. Two codes are nested s.t. Ho = [Iél}
C™ ~ Unif(Cy) s™
0
yrR u" zZ" X" n iid
Mlklsz D I—l b2 "“: ) U™ ~ Bern(1/2) '
o YTk B Bern(1/2) is shared between encoder and decoder

o M*17*2 is the message
o U" B Bern(1/2) =  drv (qxn.sn, [[p(x,s) <6
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1. (k2,n) P2P code (Ha, ¢2) with decoding distance § for B is the “symmetrized

(s, v|z) £ px,s(z®v,s) channel” of p(x, s)
2. (n — k1, n) Slepian-Wolf code (H1, ¢1) with error probability €
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0
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k1= W gkl
o YTk B Bern(1/2) is shared between encoder and decoder

o M*17*2 is the message
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P2P Code + Slepian—Wolf Code — Gelfand—Pinsker Code

@ Lego bricks:
1. (k2,n) P2P code (Ha, ¢2) with decoding distance § for B is the “symmetrized

(s, v|z) £ px,s(z®v,s) channel” of p(x, s)
2. (n — k1, n) Slepian-Wolf code (H1, ¢1) with error probability €

p(x,y) = p(z,9)ply|z,s)
S
Hy
3. Two codes are nested s.t. Ho = Ql

C™ ~ Unif(Cy) s™
0

vk ur zZ" X" Hi X" = V"*kl
ks D [ A =n )

o YTk B Bern(1/2) is shared between encoder and decoder
o M*17*2 is the message

iid -
o U" ~ Bern(1/2) = drv (qxn sn,[[p(z,s)) <0
—k
o HiX" =V ™
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@ Lego bricks:
1. (k2,n) P2P code (Ha2, ¢2) with decoding distance ¢ for p is the “symmetrized

p(s,v|z) £ px,s(zDv,s) channel” of p(x, s)
2. (n — k1,n) Slepian-Wolf code (H1, ¢1) with error probability €

p(z,y) =D pl@,8)p(y |z, s)

3. Two codes are nested s.t. Ho = Vg}
0
RNG| -l vk
o 7 I | N
Vn—kl UTL Zn Xn Yn Xn M 1—Kk2
i et e L fap
o Vi TH Y Bern(1/2) is shared between encoder and decoder
o MF1=F2 is the message
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1. (k2,n) P2P code (Ha2, ¢2) with decoding distance ¢ for p is the “symmetrized

p(s,v|z) £ px,s(zDv,s) channel” of p(x, s)
2. (n — k1,n) Slepian-Wolf code (H1, ¢1) with error probability €

p(z,y) =D pl@,8)p(y |z, s)

Q

3. Two codes are nested s.t. Ho = {Hl}

Gelfand- o Gelfand-
gk Pinsker n l n Pinsker Akl —ko
v Encoder f X p(ylx SY— Decod _]\’4
. ) ecoder £

A Y Bern(1/2) is shared between encoder and decoder

MF¥1=*2 s the message

U™ 8 Bern(1/2) =  drv (qgxn.sn, [[pla,s) <6

H, X" =V k
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P2P Code + Slepian—Wolf Code — Gelfand—Pinsker Code

@ Lego bricks:
1. (k2,n) P2P code (Ha2, ¢2) with decoding distance ¢ for

p(s,v|z) 2 px s(z®v,s)

2. (n — k1,n) Slepian-Wolf code (H1, ¢1) with error probability €

p(z,y) =D pl@,8)p(y |z, s)

P is the “symmetrized
channel” of p(x, s)

3. Two codes are nested s.t. Ho = Vg}
STL
0 G(?Ifand- l Gelfand-
n—k ik n nj  Pinsker Mk1—k2
Vi Encoder f X p(y|z, s R —
MF1—E2 ) Decoder &
o Vi TH Y Bern(1/2) is shared between encoder and decoder Theorem
o MF1=F2 is the message R = k1=k2

iid -
U" ~Bern(1/2) = dvv (gx»,s», [[p(z,s)) <9
—k
H1 X" = ‘/ln 1
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Rate Achievability

@ 3 a sequence of Slepian—-Wolf codes for p(x,y) s.t. € — 0 if and only if

n—k’l

> H(X|Y)

n
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o I a sequence of P2P codes for the symmetrized channel p s.t. 6 — 0 if and only if
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Rate Achievability

@ 3 a sequence of Slepian—-Wolf codes for p(x,y) s.t. € — 0 if and only if

n—k’l

> H(X|Y)

n

o I a sequence of P2P codes for the symmetrized channel p s.t. 6 — 0 if and only if

k2 HX )
n

o Rate R = kln;’” can be made arbitrarily close to

H(X|S) - H(X|Y) = I(X;Y) — I(X;8)
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Marton Coding for Broadcast Channels

o Goal: Code for 2-user broadcast channel p(y1,y2 |21, 22) with two transmit antennas

k n Y ]/\Zkl
Myt X1 L Decoder 1 [~ 7!
M2 Encoder x5 [P(y1,y2|z1, 22) .

<5l Y2 ]/\4\162
Decoder 2 —> 13
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o Goal: Code for 2-user broadcast channel p(y1,y2 |21, 22) with two transmit antennas

n A7kl
MM Xr Y — M,
it SN L Decoder 1
ME2 Encoder | yr |p(y1, yz|z1, 22)
NN Y2n A7k
Decoder 2 |—> M,
Ri =ki/n
Ro = ka/n
_ k1 k1 k2 orka
Pe = P{M[" # NIJ* U ME? # N2}
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Marton Coding for Broadcast Channels

o Goal: Code for 2-user broadcast channel p(y1,y2 |21, 22) with two transmit antennas

k n Y > ]/\Zkl
My oF X7 L Decoder 1 1
MQkQ Encoder X7y p(y1,y2|T1, T2) .

<5l Y2 ]/\4\162
Decoder 2 ——> V12
Ri =ki/n
Ro = ka/n

Pe = P{M[" # NIJ* U ME? # N2}

@ [Marton 1979]: 3 encoder and decoders with vanishing P. for rates (R, Rz) if

Ry <I(X1;Y1)
R <I(X2;Y2)
Rl +R2 < I(Xl;Yl) + I(XQ;YQ) — I(X1;X2)

for some input distribution p(z1, z2)
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Marton Coding for Broadcast Channels

o Approach: Target a channel input distribution p(z1, z2).

@ This completely defines

p(z1, 2, y1,y2) = p(x1, v2)p(Y1, Y2 | 1, 22)
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Marton Coding for Broadcast Channels

o Approach: Target a channel input distribution p(z1, z2).

@ This completely defines

o Lego bricks:

p(z1, 2, y1,y2) = p(x1, v2)p(Y1, Y2 | 1, 22)

o (R1,n) asymmetric channel code for channel X; — Y7 with error probability €1
o (Ra2,n) Gelfand—Pinsker code for X2 — Y5 with available “state” X at the encoder
with error probability €2

k1 . n . —
My Asymmetric Yy Asymmetric Ak
ch. encoder ch. decoder 1
N Vv p(yl,y2|az1,x2)
2 n —
M2 GP YE GP Mk2
2
encoder decoder
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Marton Coding for Broadcast Channels

o Approach: Target a channel input distribution p(z1, z2).

@ This completely defines

o Lego bricks:

p(z1, 2, y1,y2) = p(x1, v2)p(Y1, Y2 | 1, 22)

o (R1,n) asymmetric channel code for channel X; — Y7 with error probability €1
o (Ra2,n) Gelfand—Pinsker code for X2 — Y5 with available “state” X at the encoder
with error probability €2

k
M7 | Asymmetric
ch. encoder
kd
My GP
encoder

p(yh y2|$17 $2)

}/ln

}/*277,

Asymmetric

ch. decoder

GP

decoder

@ Error probability P. < €1 + €2

@ Can achieve a corner point in Marton's rate region
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@ Marton code can be implemented using four P2P codes for BMS channels
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Simulation Results: Marton Coding

@ Two-user broadcast channel

Yi| X1 Z
i) =[]+ 2]

where:
o (X1,X2) € {£1}?
o Hy, = ; ‘(1] is the channel gain matrix

o W is a 2 x 2 precoding matrix used by the transmitter (if needed)
o Z1,Z3 ~ N(0,1) are independent
o Encoder is subject to a sum-power constraint P such that

EIIWX?I?] < P

o We use g =0.9.

o Marton Coding: target a channel input distribution p(z1, z2)

nghaddar@ucsd.edu Coding for Networks and Channels With Memory November 17, 2022

26 /31



Coding Strategies Over Broadcast Channel

@ Maximum achievable sum-rate:

Rsum,max(p(wl,xz),w) 2 1(X1;V1) 4 I(Xo; Ya) — I(X1; X2)
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Coding Strategies Over Broadcast Channel

@ Maximum achievable sum-rate:

Rsum,max(p($17x2)>w) £ I(Xl;Yl) + I(XZ;Y2) - I(X1;X2)

o Coding strategies:
1. Marton coding with optimal precoding

2. Marton coding without precoding

3. Symmetric coding with optimal precoding
4. Symmetric coding with MMSE precoding

5. Time division
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1. Marton coding with optimal precoding
= target p(z1,x2) and W that maximize Rsum,max

2. Marton coding without precoding
=set W =,/ gI and target p(x1,z2) that maximizes Rsum,max
3. Symmetric coding with optimal precoding
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Coding Strategies Over Broadcast Channel

@ Maximum achievable sum-rate:

Rsum,max(p(xl,xz),w) 2 1(X1;V1) 4 I(Xo; Ya) — I(X1; X2)

o Coding strategies:
1. Marton coding with optimal precoding
= target p(z1,x2) and W that maximize Rsum,max

2. Marton coding without precoding
=set W =,/ gI and target p(x1,z2) that maximizes Rsum,max
3. Symmetric coding with optimal precoding
= Set p(z1,22) = 1/4 for each (z1,x2), and target W that maximizes Rsum,max

4. Symmetric coding with MMSE precoding
= Set p(z1,22) = 1/4 for each (x1,22), and W = (HL Hep, + %I)_ng;‘

5. Time division
= communicate to only one user in the channel
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Simulations, n = 1024, Rgum = 1

@ Use polar codes with SC decoding (rates chosen “close” to theoretical limits)
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Code Constructions

Slepian—
Wolf Code

P2P Code for Lossless
BMS Channel Source Code

Asymmetric Gelfand— Wyner— ‘ Lossy
Channel Code Pinsker Code Ziv Code Source Code

X

Marton Code for Berger— Multiple
Broadcast Channel Tung Code Description Code

Code for Multiple
Access Channel

Code for Code for
uplink C-RAN downlink C-RAN
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Code Constructions

Slepian—
Wolf Code

P2P Code for Lossless
BMS Channel Source Code

Asymmetric Gelfand— Wyner— ‘ Lossy
Channel Code Pinsker Code Ziv Code Source Code

X

LMarton Code for ‘ L Berger— ‘ L Multiple

Code for Multiple
Access Channel

Broadcast Channel Tung Code Description Code

Code for Code for
uplink C-RAN downlink C-RAN

@ All coding schemes can be constructed starting from P2P codes for BMS channels.
o All constructions are rate-optimal if the constituent Lego bricks are rate-optimal.* J
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Concluding Remarks

@ Lego-brick code design: -

RNG
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https://arxiv.org/abs/2211.07208
https://github.com/nadimgh/lego-brick

Concluding Remarks

Code for a network

@ Lego-brick code design:
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Concluding Remarks

Code for a network

Properties

@ Lego-brick code design:

Nested Linearity
Error Probability
Decoding Distance
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Concluding Remarks

Code for a network

Properties

@ Lego-brick code design: Nested Linearity
Error Probability

Decoding Distance

o Future directions
1. Channels with non-binary inputs = coded modulation

2. Networks with large (unknown) number of users: random access?

3. Design of codes with a good decoding distance
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Concluding Remarks

Code for a network

Properties
@ Lego-brick code design: Nested Linearity
Error Probability
Decoding Distance
o Future directions
1. Channels with non-binary inputs = coded modulation
2. Networks with large (unknown) number of users: random access?
3. Design of codes with a good decoding distance
o ArXiv paper: https://arxiv.org/abs/2211.07208
o Simulation code: https://github.com/nadimgh/lego-brick

nghaddar Coding for Networks and Channels With Memory November 17, 2022 31/31


https://arxiv.org/abs/2211.07208
https://github.com/nadimgh/lego-brick

Acknowledgments

@ Prof. Young-Han Kim

nghaddar@ucsd.edu Coding for Networks and Channels With Memory November 17, 2022 31/31



Acknowledgments

@ Prof. Young-Han Kim
@ Prof. Larry Milstein

nghaddar@ucsd.edu Coding for Networks and Channels With Memory November 17, 2022 31/31



Acknowledgments
@ Prof. Young-Han Kim

@ Prof. Larry Milstein
@ Prof. Paul Siegel, Prof. Arya Mazumdar, Prof. Alireza Salehi Golsefidy

nghaddar@ucsd.edu Coding for Networks and Channels With Memory November 17, 2022 31/31



Acknowledgments

Prof. Young-Han Kim
@ Prof. Larry Milstein

Prof. Paul Siegel, Prof. Arya Mazumdar, Prof. Alireza Salehi Golsefidy
@ Prof. Alexander Vardy

nghaddar@ucsd.edu Coding for Networks and Channels With Memory November 17, 2022 31/31



Acknowledgments

@ Prof. Young-Han Kim

@ Prof. Larry Milstein

@ Prof. Paul Siegel, Prof. Arya Mazumdar, Prof. Alireza Salehi Golsefidy
@ Prof. Alexander Vardy

@ Prof. Lele Wang

nghaddar@ucsd.edu Coding for Networks and Channels With Memory November 17, 2022 31/31



Acknowledgments

@ Prof. Young-Han Kim

@ Prof. Larry Milstein

@ Prof. Paul Siegel, Prof. Arya Mazumdar, Prof. Alireza Salehi Golsefidy
@ Prof. Alexander Vardy

@ Prof. Lele Wang

Funding: InterDigital (Dr. Liangping Ma), ETRI

nghaddar@ucsd.edu Coding for Networks and Channels With Memory November 17, 2022 31/31



Acknowledgments

@ Prof. Young-Han Kim

@ Prof. Larry Milstein

@ Prof. Paul Siegel, Prof. Arya Mazumdar, Prof. Alireza Salehi Golsefidy
@ Prof. Alexander Vardy

@ Prof. Lele Wang

o Funding: InterDigital (Dr. Liangping Ma), ETRI

o Internship: Samsung (Dr. Hamid Saber, Dr. Jung Hyun Bae), Qualcomm (Dr. Ari
Klein)

nghaddar@ucsd.edu Coding for Networks and Channels With Memory November 17, 2022 31/31



Acknowledgments

@ Prof. Young-Han Kim

@ Prof. Larry Milstein

@ Prof. Paul Siegel, Prof. Arya Mazumdar, Prof. Alireza Salehi Golsefidy
@ Prof. Alexander Vardy

@ Prof. Lele Wang

o Funding: InterDigital (Dr. Liangping Ma), ETRI

o Internship: Samsung (Dr. Hamid Saber, Dr. Jung Hyun Bae), Qualcomm (Dr. Ari
Klein)

o Labmates: Alankrita, Jiun-Ting, Jongha, Pinar, Shouvik

nghaddar@ucsd.edu Coding for Networks and Channels With Memory November 17, 2022 31/31



Acknowledgments

@ Prof. Young-Han Kim

@ Prof. Larry Milstein

@ Prof. Paul Siegel, Prof. Arya Mazumdar, Prof. Alireza Salehi Golsefidy
@ Prof. Alexander Vardy

@ Prof. Lele Wang

o Funding: InterDigital (Dr. Liangping Ma), ETRI

o Internship: Samsung (Dr. Hamid Saber, Dr. Jung Hyun Bae), Qualcomm (Dr. Ari
Klein)

o Labmates: Alankrita, Jiun-Ting, Jongha, Pinar, Shouvik

@ UCSD: Rohan, Sukanya, Aditya, Anwesan, Shahar, Raghu, Yuhan, Muhammad,
Mouna, Ahmed, Hanwen, Govind, Sheel, Pranav

nghaddar@ucsd.edu Coding for Networks and Channels With Memory November 17, 2022 31/31



Acknowledgments

@ Prof. Young-Han Kim

@ Prof. Larry Milstein

@ Prof. Paul Siegel, Prof. Arya Mazumdar, Prof. Alireza Salehi Golsefidy
@ Prof. Alexander Vardy

@ Prof. Lele Wang

o Funding: InterDigital (Dr. Liangping Ma), ETRI

o Internship: Samsung (Dr. Hamid Saber, Dr. Jung Hyun Bae), Qualcomm (Dr. Ari
Klein)

o Labmates: Alankrita, Jiun-Ting, Jongha, Pinar, Shouvik

@ UCSD: Rohan, Sukanya, Aditya, Anwesan, Shahar, Raghu, Yuhan, Muhammad,
Mouna, Ahmed, Hanwen, Govind, Sheel, Pranav

@ AUB: Abed, Wajeb, Rami, Mounib, Razan, Kassir, Taha, and Natali

nghaddar@ucsd.edu Coding for Networks and Channels With Memory November 17, 2022 31/31



Acknowledgments

@ Prof. Young-Han Kim

@ Prof. Larry Milstein

@ Prof. Paul Siegel, Prof. Arya Mazumdar, Prof. Alireza Salehi Golsefidy
@ Prof. Alexander Vardy

@ Prof. Lele Wang

o Funding: InterDigital (Dr. Liangping Ma), ETRI

o Internship: Samsung (Dr. Hamid Saber, Dr. Jung Hyun Bae), Qualcomm (Dr. Ari
Klein)

o Labmates: Alankrita, Jiun-Ting, Jongha, Pinar, Shouvik

@ UCSD: Rohan, Sukanya, Aditya, Anwesan, Shahar, Raghu, Yuhan, Muhammad,
Mouna, Ahmed, Hanwen, Govind, Sheel, Pranav

@ AUB: Abed, Wajeb, Rami, Mounib, Razan, Kassir, Taha, and Natali
o EPFL: Rakshita

nghaddar@ucsd.edu Coding for Networks and Channels With Memory November 17, 2022 31/31



Acknowledgments

@ Prof. Young-Han Kim

@ Prof. Larry Milstein

@ Prof. Paul Siegel, Prof. Arya Mazumdar, Prof. Alireza Salehi Golsefidy
@ Prof. Alexander Vardy

@ Prof. Lele Wang

o Funding: InterDigital (Dr. Liangping Ma), ETRI

o Internship: Samsung (Dr. Hamid Saber, Dr. Jung Hyun Bae), Qualcomm (Dr. Ari
Klein)

o Labmates: Alankrita, Jiun-Ting, Jongha, Pinar, Shouvik

@ UCSD: Rohan, Sukanya, Aditya, Anwesan, Shahar, Raghu, Yuhan, Muhammad,
Mouna, Ahmed, Hanwen, Govind, Sheel, Pranav

@ AUB: Abed, Wajeb, Rami, Mounib, Razan, Kassir, Taha, and Natali
o EPFL: Rakshita

@ Cousins: Manal, Ali, Leila

nghaddar@ucsd.edu Coding for Networks and Channels With Memory November 17, 2022 31/31



Acknowledgments

@ Prof. Young-Han Kim

@ Prof. Larry Milstein

@ Prof. Paul Siegel, Prof. Arya Mazumdar, Prof. Alireza Salehi Golsefidy
@ Prof. Alexander Vardy

@ Prof. Lele Wang

o Funding: InterDigital (Dr. Liangping Ma), ETRI

o Internship: Samsung (Dr. Hamid Saber, Dr. Jung Hyun Bae), Qualcomm (Dr. Ari
Klein)

o Labmates: Alankrita, Jiun-Ting, Jongha, Pinar, Shouvik

@ UCSD: Rohan, Sukanya, Aditya, Anwesan, Shahar, Raghu, Yuhan, Muhammad,
Mouna, Ahmed, Hanwen, Govind, Sheel, Pranav

@ AUB: Abed, Wajeb, Rami, Mounib, Razan, Kassir, Taha, and Natali
o EPFL: Rakshita
@ Cousins: Manal, Ali, Leila

o My heart: Baba, Mama, Fattouma, Hammoudi

nghaddar@ucsd.edu Coding for Networks and Channels With Memory November 17, 2022 31/31



The best

nghaddar@ucsd.edu Coding for Networks and Channels With Memory November 17, 2022 31/31



