Channel Coding Techniques for Communication over Networks and Channels with Memory

Nadim Ghaddar

Department of Electrical and Computer Engineering
University of California San Diego

Ph.D. Defense

November 17, 2022

UCSanDiego

Point-to-Point Communication

- Shannon's model

- Rate $R=k / n$
- Error probability $P_{e}=\mathrm{P}\left\{M^{k} \neq \hat{M}^{k}\right\}$

Point-to-Point Communication

- Shannon's model

- Rate $R=k / n$
- Error probability $P_{e}=\mathrm{P}\left\{M^{k} \neq \hat{M}^{k}\right\}$

P2P Channel Coding Theorem [Shannon 1948]

Channel $p(y \mid x)$ with capacity C :

- A family of codes with vanishing P_{e} exists only if $R \leq C$.
- For any $R<C$, a family of codes with vanishing P_{e} exists.

Road to Capacity

Image courtesy: Lele Wang

Road to Capacity

Image courtesy: Lele Wang

Road to Capacity

Image courtesy: Lele Wang

Road to Capacity

Road to Capacity

Road to Capacity

Road to Capacity

Approach capacity for all binary point-to-point memoryless symmetric (BMS) channels!

Road to Capacity

Approach capacity for all binary point-to-point memoryless symmetric (BMS) channels!

Road to Capacity

Approach capacity for all binary $\underbrace{\text { point-to-point }}_{\text {one sender, one receiver }}$ memoryless symmetric (BMS) channels!

Road to Capacity

Approach capacity for all binary point-to-point $\underbrace{\text { memoryless }}$ symmetric (BMS) channels!
indep. channel uses

Road to Capacity

Approach capacity for all binary point-to-point memoryless symmetric (BMS) channels!

Road to Capacity

Approach capacity for all binary point-to-point memoryless symmetric (BMS) channels!

This Dissertation: Networks and Channels with Memory

I. Coding over networks: A Lego-brick approach
II. Joint channel estimation and polar coding over channels with memory

This Dissertation: Networks and Channels with Memory

I. Coding over networks: A Lego-brick approach

- Gelfand-Pinsker coding, asymmetric channel coding
- Marton coding over broadcast channels
- Distributed lossy compression
- Coding over cloud radio access networks (C-RAN's)
II. Joint channel estimation and polar coding over channels with memory

This Dissertation: Networks and Channels with Memory

I. Coding over networks: A Lego-brick approach

- Gelfand-Pinsker coding, asymmetric channel coding
- Marton coding over broadcast channels
- Distributed lossy compression
- Coding over cloud radio access networks (C-RAN's)
II. Joint channel estimation and polar coding over channels with memory
- Decoding algorithms that take into account the channel memory
- Pilot arrangement pattern that uses code structure
- Finite-state Markov channels
- Gauss-Markov channels
- Flat-fading channels

This Dissertation: Networks and Channels with Memory

I. Coding over networks: A Lego-brick approach

- Gelfand-Pinsker coding, asymmetric channel coding
- Marton coding over broadcast channels
- Distributed lossy compression
- Coding over cloud radio access networks (C-RAN's)
II. Joint channel estimation and polar coding over channels with memory
- Decoding algorithms that take into account the channel memory
- Pilot arrangement pattern that uses code structure
- Finite-state Markov channels
- Gauss-Markov channels
- Flat-fading channels

Coding over Networks: A Lego-Brick Approach

Coding over Networks

Network information theory: Characterizes achievable rates for network communication.

Coding over Networks

Network information theory: Characterizes achievable rates for network communication.

Coding over Networks

Network information theory: Characterizes achievable rates for network communication.

Coding over Networks

Network information theory: Characterizes achievable rates for network communication.

Goal: Construct low-complexity coding schemes over networks!

Previous Work

- Polar codes
- Slepian-Wolf coding [Arıkan 2012]
- Lossy source coding of a symmetric source [Korada-Urbanke 2010]
- Multiple access channels [Șaşoğlu-Telatar-Yeh 2010, Abbe-Telatar 2012]
- Broadcast channels [Mondelli-Hassani-Sason-Urbanke 2015]
- Interference channels [Wang-Șașoğlu 2014]
- Relay channels [Wang 2015]

Previous Work

- Polar codes
- Slepian-Wolf coding [Arıkan 2012]
- Lossy source coding of a symmetric source [Korada-Urbanke 2010]
- Multiple access channels [Șaşoğlu-Telatar-Yeh 2010, Abbe-Telatar 2012]
- Broadcast channels [Mondelli-Hassani-Sason-Urbanke 2015]
- Interference channels [Wang-Șașoğlu 2014]
- Relay channels [Wang 2015]
- Sparse graph codes with optimal decoding
- Lossy source coding of a symmetric source [Matsunaga-Yamamoto 2003]
- Gelfand-Pinsker and Wyner-Ziv coding [Muramatsu-Miyake 2010]

Previous Work

- Polar codes
- Slepian-Wolf coding [Arıkan 2012]
- Lossy source coding of a symmetric source [Korada-Urbanke 2010]
- Multiple access channels [Șaşoğlu-Telatar-Yeh 2010, Abbe-Telatar 2012]
- Broadcast channels [Mondelli-Hassani-Sason-Urbanke 2015]
- Interference channels [Wang-Șașoğlu 2014]
- Relay channels [Wang 2015]
- Sparse graph codes with optimal decoding
- Lossy source coding of a symmetric source [Matsunaga-Yamamoto 2003]
- Gelfand-Pinsker and Wyner-Ziv coding [Muramatsu-Miyake 2010]
- Low-density generator matrix (LDGM) codes with message-passing decoding
- Lossy source coding of a symmetric source [Wainwright-Maneva 2005, Aref-Macris-Vuffray 2015]

Previous Work

- Polar codes
- Slepian-Wolf coding [Arıkan 2012]
- Lossy source coding of a symmetric source [Korada-Urbanke 2010]
- Multiple access channels [Șaşoğlu-Telatar-Yeh 2010, Abbe-Telatar 2012]
- Broadcast channels [Mondelli-Hassani-Sason-Urbanke 2015]
- Interference channels [Wang-Șașoğlu 2014]
- Relay channels [Wang 2015]
- Sparse graph codes with optimal decoding
- Lossy source coding of a symmetric source [Matsunaga-Yamamoto 2003]
- Gelfand-Pinsker and Wyner-Ziv coding [Muramatsu-Miyake 2010]
- Low-density generator matrix (LDGM) codes with message-passing decoding
- Lossy source coding of a symmetric source [Wainwright-Maneva 2005, Aref-Macris-Vuffray 2015]
- Lattice codes
- Gaussian channels with Gaussian state (dirty paper coding) [Erez-Shamai-Zamir 2005]

Lego-Brick Approach to Coding

Question: What properties should P2P codes satisfy to be used for lossy source coding?

Lego-Brick Approach to Coding

Question: What properties should P2P codes satisfy to be used for lossy source coding?

"Lego-brick" approach to coding

Assemble codes in one communication setting $\quad \Longrightarrow \quad$ A code in a different setting

Lego-Brick Approach to Coding

Question: What properties should P2P codes satisfy to be used for lossy source coding?

"Lego-brick" approach to coding

Assemble codes in one communication setting $\quad \Longrightarrow$ A code in a different setting

For a given coding problem,

- What "Lego bricks" to assemble, and what properties should they satisfy?
- How to assemble Lego bricks?
- How do performance guarantees translate?

Lego Bricks

- $p(y \mid x)$ is symmetric if $\exists \pi: \mathcal{Y} \rightarrow \mathcal{Y}$ s.t. $\pi^{-1}=\pi$ and $p(y \mid 0)=p(\pi(y) \mid 1), \forall y$
- BSC: $\pi(y)=y \oplus 1$
- Binary-input AWGN: $\pi(y)=-y$

Lego Bricks

- $p(y \mid x)$ is symmetric if $\exists \pi: \mathcal{Y} \rightarrow \mathcal{Y}$ s.t. $\pi^{-1}=\pi$ and $p(y \mid 0)=p(\pi(y) \mid 1), \forall y$
- BSC: $\pi(y)=y \oplus 1$
- Binary-input AWGN: $\pi(y)=-y$
- Note: Linear code ensembles can only achieve capacity of symmetric channels!

Lego Bricks

- $p(y \mid x)$ is symmetric if $\exists \pi: \mathcal{Y} \rightarrow \mathcal{Y}$ s.t. $\pi^{-1}=\pi$ and $p(y \mid 0)=p(\pi(y) \mid 1), \forall y$
- BSC: $\pi(y)=y \oplus 1$
- Binary-input AWGN: $\pi(y)=-y$
- Note: Linear code ensembles can only achieve capacity of symmetric channels!
- Basic Lego Bricks:

- P2P code (H, ϕ) for BMS channel $p(y \mid x)$
- Parity-check matrix H, decoder ϕ
- Dimension k, blocklength n
- Probability of error ϵ
- ...

Lego Bricks

- $p(y \mid x)$ is symmetric if $\exists \pi: \mathcal{Y} \rightarrow \mathcal{Y}$ s.t. $\pi^{-1}=\pi$ and $p(y \mid 0)=p(\pi(y) \mid 1), \forall y$
- BSC: $\pi(y)=y \oplus 1$
- Binary-input AWGN: $\pi(y)=-y$
- Note: Linear code ensembles can only achieve capacity of symmetric channels!
- Basic Lego Bricks:

- P2P code (H, ϕ) for BMS channel $p(y \mid x)$
- Parity-check matrix H, decoder ϕ
- Dimension k, blocklength n
- Probability of error ϵ
- ...

$$
\mathrm{RNG} \rightarrow V^{n} \stackrel{\mathrm{iid}}{\sim} \operatorname{Bern}(1 / 2)
$$

- Random dither

Lego Bricks

- $p(y \mid x)$ is symmetric if $\exists \pi: \mathcal{Y} \rightarrow \mathcal{Y}$ s.t. $\pi^{-1}=\pi$ and $p(y \mid 0)=p(\pi(y) \mid 1), \forall y$
- BSC: $\pi(y)=y \oplus 1$
- Binary-input AWGN: $\pi(y)=-y$
- Note: Linear code ensembles can only achieve capacity of symmetric channels!
- Basic Lego Bricks:

- P2P code (H, ϕ) for BMS channel $p(y \mid x)$
- Parity-check matrix H, decoder ϕ
- Dimension k, blocklength n
- Probability of error ϵ
- ...
- Notation: WLOG, let $H=\left[\begin{array}{ll}A & B\end{array}\right]$ where B is nonsingular, and define

$$
\widetilde{H} \triangleq\left[\begin{array}{c}
\mathbf{0} \\
B^{-1} H
\end{array}\right] .
$$

Lego Bricks

- $p(y \mid x)$ is symmetric if $\exists \pi: \mathcal{Y} \rightarrow \mathcal{Y}$ s.t. $\pi^{-1}=\pi$ and $p(y \mid 0)=p(\pi(y) \mid 1), \forall y$
- BSC: $\pi(y)=y \oplus 1$
- Binary-input AWGN: $\pi(y)=-y$
- Note: Linear code ensembles can only achieve capacity of symmetric channels!
- Basic Lego Bricks:

- P2P code (H, ϕ) for BMS channel $p(y \mid x)$
- Parity-check matrix H, decoder ϕ
- Dimension k, blocklength n
- Probability of error ϵ
- ...
- Notation: WLOG, let $H=\left[\begin{array}{ll}A & B\end{array}\right]$ where B is nonsingular, and define

$$
\widetilde{H} \triangleq\left[\begin{array}{c}
\mathbf{0} \\
B^{-1} H
\end{array}\right] .
$$

- Note: $\tilde{H}\left[\begin{array}{c}\mathbf{0} \\ s^{n-k}\end{array}\right]=\left[\begin{array}{c}\mathbf{0} \\ s^{n-k}\end{array}\right], \forall s^{n-k}$.

Example: Slepian-Wolf Problem

- Slepian-Wolf problem $p(x, y)$

$\left(X^{n}, Y^{n}\right) \stackrel{\text { iid }}{\sim} p(x, y)$
Encoder g
Decoder ψ
$P_{e}^{\mathrm{SW}}=\mathrm{P}\left\{X^{n} \neq \widehat{X}^{n}\right\}$

Example: Slepian-Wolf Problem

- Slepian-Wolf problem $p(x, y)$

- P2P code for BMS channel \rightarrow Slepian-Wolf code

Example: Slepian-Wolf Problem

- Slepian-Wolf problem $p(x, y)$

- P2P code for BMS channel \rightarrow Slepian-Wolf code

Basic Lego bricks

Slepian-Wolf code

Example: P2P code \rightarrow Slepian-Wolf code [Wang-Kim 2015]

1) "Codifying":

Lemma

$$
\bar{X}^{n} \stackrel{\text { iid }}{\sim} \operatorname{Bern}(1 / 2) \quad \Longrightarrow \quad \bar{X}^{n} \oplus \widetilde{H} \bar{X}^{n} \sim \operatorname{Unif}(\mathcal{C}) .
$$

Example: P2P code \rightarrow Slepian-Wolf code [Wang-Kim 2015]

1) "Codifying":

Lemma

$$
\bar{X}^{n} \stackrel{\mathrm{iid}}{\sim} \operatorname{Bern}(1 / 2) \quad \Longrightarrow \quad \bar{X}^{n} \oplus \widetilde{H} \bar{X}^{n} \sim \operatorname{Unif}(\mathcal{C})
$$

Example: P2P code \rightarrow Slepian-Wolf code [Wang-Kim 2015]

1) "Codifying":

Lemma

$$
\bar{X}^{n} \stackrel{\text { iid }}{\sim} \operatorname{Bern}(1 / 2) \quad \Longrightarrow \quad \bar{X}^{n} \oplus \tilde{H} \bar{X}^{n} \sim \operatorname{Unif}(\mathcal{C})
$$

2) "Symmetrization":

Lemma [Chen et al. 2009]
If $V \sim \operatorname{Bern}(1 / 2) \Perp(X, Y)$, then $\bar{p}(y, v \mid x):=p_{X, Y}(x \oplus v, y)$ is symmetric

Example: P2P code \rightarrow Slepian-Wolf code [Wang-Kim 2015]

1) "Codifying":

Lemma

$$
\bar{X}^{n} \stackrel{\text { iid }}{\sim} \operatorname{Bern}(1 / 2) \quad \Longrightarrow \quad \bar{X}^{n} \oplus \tilde{H} \bar{X}^{n} \sim \operatorname{Unif}(\mathcal{C})
$$

2) "Symmetrization":

Lemma [Chen et al. 2009]
If $V \sim \operatorname{Bern}(1 / 2) \Perp(X, Y)$, then $\bar{p}(y, v \mid x):=p_{X, Y}(x \oplus v, y)$ is symmetric

$$
X^{n} \stackrel{\mathrm{iid}}{\sim} p(x) \longrightarrow p(y \mid x) \longrightarrow Y^{n}
$$

Example: P2P code \rightarrow Slepian-Wolf code [Wang-Kim 2015]

1) "Codifying":

Lemma

$$
\bar{X}^{n} \stackrel{\text { iid }}{\sim} \operatorname{Bern}(1 / 2) \quad \Longrightarrow \quad \bar{X}^{n} \oplus \tilde{H} \bar{X}^{n} \sim \operatorname{Unif}(\mathcal{C})
$$

2) "Symmetrization":

Lemma [Chen et al. 2009]
If $V \sim \operatorname{Bern}(1 / 2) \Perp(X, Y)$, then $\bar{p}(y, v \mid x):=p_{X, Y}(x \oplus v, y)$ is symmetric

\bar{p} is symmetric under $\pi((y, v))=(y, v \oplus 1)$

Example: P2P code \rightarrow Slepian-Wolf code [Wang-Kim 2015]

1) "Codifying":

Lemma

$$
\bar{X}^{n} \stackrel{\text { iid }}{\sim} \operatorname{Bern}(1 / 2) \quad \Longrightarrow \quad \bar{X}^{n} \oplus \tilde{H} \bar{X}^{n} \sim \operatorname{Unif}(\mathcal{C})
$$

2) "Symmetrization":

Lemma [Chen et al. 2009]
If $V \sim \operatorname{Bern}(1 / 2) \Perp(X, Y)$, then $\bar{p}(y, v \mid x):=p_{X, Y}(x \oplus v, y)$ is symmetric
\bar{p} is symmetric under $\pi((y, v))=(y, v \oplus 1)$
\bar{p} is the "symmetrized channel" of $p(x, y)$

Example: P2P code \rightarrow Slepian-Wolf code [Wang-Kim 2015]

- Slepian-Wolf problem $p(x, y)$

$$
X^{n} \stackrel{\mathrm{iid}}{\sim} p(x) \longrightarrow p(y \mid x) \longrightarrow Y^{n}
$$

Example: P2P code \rightarrow Slepian-Wolf code [Wang-Kim 2015]

- Slepian-Wolf problem $p(x, y)$

$$
\begin{aligned}
X^{n} \stackrel{\text { iid }}{\sim} p(x) & \longrightarrow p(y \mid x) \\
V^{n} \stackrel{\text { iid }}{\sim} \operatorname{Bern}(1 / 2) \cdots & Y^{n} \\
\bar{X}^{n} \stackrel{\text { iid }}{\sim} \operatorname{Bern}(1 / 2) \longrightarrow \bar{p}(y, v \mid x) & \longrightarrow\left(Y^{n}, V^{n}\right)
\end{aligned}
$$

Example: P2P code \rightarrow Slepian-Wolf code [Wang-Kim 2015]

- Slepian-Wolf problem $p(x, y)$

Example: P2P code \rightarrow Slepian-Wolf code [Wang-Kim 2015]

- Slepian-Wolf problem $p(x, y)$

Example: P2P code \rightarrow Slepian-Wolf code [Wang-Kim 2015]

- Slepian-Wolf problem $p(x, y)$

Example: P2P code \rightarrow Slepian-Wolf code [Wang-Kim 2015]

- Slepian-Wolf problem $p(x, y)$

Example: P2P code \rightarrow Slepian-Wolf code [Wang-Kim 2015]

- Slepian-Wolf problem $p(x, y)$

Example: P2P code \rightarrow Slepian-Wolf code [Wang-Kim 2015]

- Slepian-Wolf problem $p(x, y)$

Example: P2P code \rightarrow Slepian-Wolf code [Wang-Kim 2015]

- Slepian-Wolf problem $p(x, y)$

- Coding scheme: (H, ϕ) is a (k, n) code for \bar{p} with error probability ϵ

Example: P2P code \rightarrow Slepian-Wolf code [Wang-Kim 2015]

- Slepian-Wolf problem $p(x, y)$

- Coding scheme: (H, ϕ) is a (k, n) code for \bar{p} with error probability ϵ

Theorem

$$
\begin{aligned}
& R^{\mathrm{SW}}=\frac{n-k}{n} \\
& P_{e}^{S W}=\epsilon
\end{aligned}
$$

Example: P2P code \rightarrow Slepian-Wolf code [Wang-Kim 2015]

- Slepian-Wolf problem $p(x, y)$

- Coding scheme: (H, ϕ) is a (k, n) code for \bar{p} with error probability ϵ

Example: P2P code \rightarrow Slepian-Wolf code [Wang-Kim 2015]

- Slepian-Wolf problem $p(x, y)$

- Coding scheme: (H, ϕ) is a (k, n) code for \bar{p} with error probability ϵ

From Slepian-Wolf to Coding over Networks

- This talk:

P2P Code for
BMS Channel Slepian-Wolf Code

From Slepian-Wolf to Coding over Networks

- This talk:

$$
\begin{aligned}
& \text { P2P Code for } \\
& \text { BMS Channel }
\end{aligned}
$$

From Slepian-Wolf to Coding over Networks

- This talk:

> Properties
> Linearity Error Probability

From Slepian-Wolf to Coding over Networks

- This talk:

Properties

Linearity Error Probability

Properties

Nested Linearity Error Probability

From Slepian-Wolf to Coding over Networks

- This talk:

> Properties
> Linearity Error Probability

Properties

Nested Linearity Error Probability Decoding Distance

Decoding Distance

- "Shaping property" of a decoding function

Decoding Distance

- "Shaping property" of a decoding function
- P2P code (H, ϕ) for BMS channel $p(y \mid x)$

$$
Y^{n} \stackrel{\mathrm{iid}}{\sim} p(y)
$$

$$
p(y):=\frac{1}{2} \sum_{x} p(y \mid x)
$$

Decoding Distance

- "Shaping property" of a decoding function
- P2P code (H, ϕ) for BMS channel $p(y \mid x)$

$$
p(y):=\frac{1}{2} \sum_{x} p(y \mid x)
$$

$$
X^{n}=\phi\left(Y^{n}\right)
$$

Decoding Distance

- "Shaping property" of a decoding function
- P2P code (H, ϕ) for BMS channel $p(y \mid x)$

$$
p(y):=\frac{1}{2} \sum_{x} p(y \mid x)
$$

$$
X^{n}=\phi\left(Y^{n}\right)
$$

Question: How "far" is ϕ from the memoryless channel $p(x \mid y)$?

Decoding Distance

- "Shaping property" of a decoding function
- P2P code (H, ϕ) for BMS channel $p(y \mid x)$

$$
p(y):=\frac{1}{2} \sum_{x} p(y \mid x)
$$

$$
X^{n}=\phi\left(Y^{n}\right)
$$

Question: How "far" is ϕ from the memoryless channel $p(x \mid y)$?

- $q\left(x^{n}, y^{n}\right)$: distribution of $\left(X^{n}, Y^{n}\right)$ $p\left(x^{n}, y^{n}\right)$: i.i.d. distribution according to $\frac{1}{2} p(y \mid x)$

Decoding Distance

- "Shaping property" of a decoding function
- P2P code (H, ϕ) for BMS channel $p(y \mid x)$

$$
p(y):=\frac{1}{2} \sum_{x} p(y \mid x)
$$

$$
X^{n}=\phi\left(Y^{n}\right)
$$

Question: How "far" is ϕ from the memoryless channel $p(x \mid y)$?

- $q\left(x^{n}, y^{n}\right)$: distribution of $\left(X^{n}, Y^{n}\right)$ $p\left(x^{n}, y^{n}\right)$: i.i.d. distribution according to $\frac{1}{2} p(y \mid x)$

$$
\text { Decoding distance } \delta \triangleq \underbrace{\frac{1}{2} \sum_{x^{n}, y^{n}}\left|q\left(x^{n}, y^{n}\right)-p\left(x^{n}, y^{n}\right)\right|}_{\text {Total variation distance } d_{\mathrm{TV}}(p, q)}
$$

Decoding Distance

- "Shaping property" of a decoding function
- P2P code (H, ϕ) for BMS channel $p(y \mid x)$

$$
p(y):=\frac{1}{2} \sum_{x} p(y \mid x)
$$

$$
X^{n}=\phi\left(Y^{n}\right)
$$

Question: How "far" is ϕ from the memoryless channel $p(x \mid y)$?

- $q\left(x^{n}, y^{n}\right)$: distribution of $\left(X^{n}, Y^{n}\right)$ $p\left(x^{n}, y^{n}\right)$: i.i.d. distribution according to $\frac{1}{2} p(y \mid x)$

$$
\text { Decoding distance } \delta \triangleq \underbrace{\frac{1}{2} \sum_{x^{n}, y^{n}}\left|q\left(x^{n}, y^{n}\right)-p\left(x^{n}, y^{n}\right)\right|}_{\text {Total variation distance } d_{\mathrm{TV}}(p, q)}
$$

- Necessary \& sufficient condition for vanishing $\delta: R>1-H(X \mid Y)$
- E.g., random codes [Bennett et. al 2002], polar codes [Korada-Urbanke 2010]

Nested Linear Codes

- Linear $\operatorname{codes} \mathcal{C}_{1}, \mathcal{C}_{2}$ s.t. $\mathcal{C}_{2} \subseteq \mathcal{C}_{1}$

- $2^{k_{1}-k_{2}}$ cosets of \mathcal{C}_{2} within a coset of \mathcal{C}_{1}

Nested Linear Codes

- Linear codes $\mathcal{C}_{1}, \mathcal{C}_{2}$ s.t. $\mathcal{C}_{2} \subseteq \mathcal{C}_{1}$

- $2^{k_{1}-k_{2}}$ cosets of \mathcal{C}_{2} within a coset of \mathcal{C}_{1}
- Applied to Gelfand-Pinsker \& Marton coding [Padakandla-Pradhan 2011]
- Coset of \mathcal{C}_{1} : uniformly chosen and shared between encoder and decoder
- Coset shift of \mathcal{C}_{2} within \mathcal{C}_{1} : indexed by message ($k_{1}-k_{2}$ bits)

Nested Linear Codes

- Linear codes $\mathcal{C}_{1}, \mathcal{C}_{2}$ s.t. $\mathcal{C}_{2} \subseteq \mathcal{C}_{1}$

- $2^{k_{1}-k_{2}}$ cosets of \mathcal{C}_{2} within a coset of \mathcal{C}_{1}
- Applied to Gelfand-Pinsker \& Marton coding [Padakandla-Pradhan 2011]
- Coset of \mathcal{C}_{1} : uniformly chosen and shared between encoder and decoder
- Coset shift of \mathcal{C}_{2} within \mathcal{C}_{1} : indexed by message ($k_{1}-k_{2}$ bits)
- Encoder: Finds a sequence in coset of \mathcal{C}_{2} that has a desired distribution
- Decoder: Finds a coset shift that includes a sequence having a desired distribution \equiv Joint typicality encoding and decoding

Nested Linear Codes

- Linear codes $\mathcal{C}_{1}, \mathcal{C}_{2}$ s.t. $\mathcal{C}_{2} \subseteq \mathcal{C}_{1}$

- $2^{k_{1}-k_{2}}$ cosets of \mathcal{C}_{2} within a coset of \mathcal{C}_{1}
- Applied to Gelfand-Pinsker \& Marton coding [Padakandla-Pradhan 2011]
- Coset of \mathcal{C}_{1} : uniformly chosen and shared between encoder and decoder
- Coset shift of \mathcal{C}_{2} within \mathcal{C}_{1} : indexed by message ($k_{1}-k_{2}$ bits)
- Encoder: Finds a sequence in coset of \mathcal{C}_{2} that has a desired distribution
- Decoder: Finds a coset shift that includes a sequence having a desired distribution \equiv Joint typicality encoding and decoding
- Note: We can choose H_{1}, H_{2} s.t. $H_{2}=\left[\begin{array}{c}H_{1} \\ Q\end{array}\right]$ for some matrix Q

P2P Code + Slepian-Wolf Code \longrightarrow Asymmetric Channel Code

- Goal: Code for asymmetric channel $p(y \mid x)$
- Approach: Target $p(x) \sim \operatorname{Bern}(\alpha)$ for some given α.
- Lego bricks:

1. $\left(k_{2}, n\right) \mathrm{P} 2 \mathrm{P}$ code $\left(H_{2}, \phi_{2}\right)$ for $\operatorname{BSC}(\alpha)$ with decoding distance δ

$$
U^{n} \stackrel{\mathrm{iid}}{\sim} \xrightarrow{\operatorname{Bern}(1 / 2)} \xrightarrow{\phi_{2}}
$$

P2P Code + Slepian-Wolf Code \longrightarrow Asymmetric Channel Code

- Goal: Code for asymmetric channel $p(y \mid x)$
- Approach: Target $p(x) \sim \operatorname{Bern}(\alpha)$ for some given α.
- Lego bricks:

1. $\left(k_{2}, n\right) \mathrm{P} 2 \mathrm{P}$ code $\left(H_{2}, \phi_{2}\right)$ for $\operatorname{BSC}(\alpha)$ with decoding distance δ

$$
X^{n}=\phi_{2}\left(U^{n}\right) \oplus U^{n}
$$

$d_{\mathrm{TV}}\left(q_{U^{n}, Z^{n}}, \prod \operatorname{DSBS}(\alpha)\right)=\delta \quad \Longrightarrow \quad d_{\mathrm{TV}}\left(q_{X^{n}}, \prod \operatorname{Bern}(\alpha)\right) \leq \delta$

P2P Code + Slepian-Wolf Code \longrightarrow Asymmetric Channel Code

- Goal: Code for asymmetric channel $p(y \mid x)$
- Approach: Target $p(x) \sim \operatorname{Bern}(\alpha)$ for some given α.
- Lego bricks:

1. $\left(k_{2}, n\right) \mathrm{P} 2 \mathrm{P}$ code $\left(H_{2}, \phi_{2}\right)$ for $\operatorname{BSC}(\alpha)$ with decoding distance δ

P2P Code + Slepian-Wolf Code \longrightarrow Asymmetric Channel Code

- Goal: Code for asymmetric channel $p(y \mid x)$
- Approach: Target $p(x) \sim \operatorname{Bern}(\alpha)$ for some given α.
- Lego bricks:

1. $\left(k_{2}, n\right) \mathrm{P} 2 \mathrm{P}$ code $\left(H_{2}, \phi_{2}\right)$ for $\operatorname{BSC}(\alpha)$ with decoding distance δ
2. $\left(n-k_{1}, n\right)$ Slepian-Wolf code $\left(H_{1}, \phi_{1}\right)$ for $p(x, y)$ with error probability ϵ
3. Two codes are nested s.t. $H_{2}=\left[\begin{array}{c}H_{1} \\ Q\end{array}\right]$.

$$
\left[\begin{array}{c}
0 \\
V_{1}^{n-k_{1}} \\
M^{k_{1}-k_{2}}
\end{array}\right]
$$

- $V_{1}^{n-k_{1}} \stackrel{\text { iid }}{\sim} \operatorname{Bern}(1 / 2)$ is shared between encoder and decoder
- $M^{k_{1}-k_{2}}$ is the message

P2P Code + Slepian-Wolf Code \longrightarrow Asymmetric Channel Code

- Goal: Code for asymmetric channel $p(y \mid x)$
- Approach: Target $p(x) \sim \operatorname{Bern}(\alpha)$ for some given α.
- Lego bricks:

1. $\left(k_{2}, n\right) \mathrm{P} 2 \mathrm{P}$ code $\left(H_{2}, \phi_{2}\right)$ for $\operatorname{BSC}(\alpha)$ with decoding distance δ
2. $\left(n-k_{1}, n\right)$ Slepian-Wolf code $\left(H_{1}, \phi_{1}\right)$ for $p(x, y)$ with error probability ϵ
3. Two codes are nested s.t. $H_{2}=\left[\begin{array}{c}H_{1} \\ Q\end{array}\right]$.

$$
U^{n} \stackrel{\mathrm{iid}}{\sim} \operatorname{Bern}(1 / 2)
$$

- $V_{1}^{n-k_{1}} \stackrel{\text { iid }}{\sim} \operatorname{Bern}(1 / 2)$ is shared between encoder and decoder
- $M^{k_{1}-k_{2}}$ is the message
- $U^{n} \stackrel{\text { iid }}{\sim} \operatorname{Bern}(1 / 2)$

P2P Code + Slepian-Wolf Code \longrightarrow Asymmetric Channel Code

- Goal: Code for asymmetric channel $p(y \mid x)$
- Approach: Target $p(x) \sim \operatorname{Bern}(\alpha)$ for some given α.
- Lego bricks:

1. $\left(k_{2}, n\right) \mathrm{P} 2 \mathrm{P}$ code $\left(H_{2}, \phi_{2}\right)$ for $\operatorname{BSC}(\alpha)$ with decoding distance δ
2. $\left(n-k_{1}, n\right)$ Slepian-Wolf code $\left(H_{1}, \phi_{1}\right)$ for $p(x, y)$ with error probability ϵ
3. Two codes are nested s.t. $H_{2}=\left[\begin{array}{c}H_{1} \\ Q\end{array}\right]$.

- $V_{1}^{n-k_{1}} \stackrel{\text { iid }}{\sim} \operatorname{Bern}(1 / 2)$ is shared between encoder and decoder
- $M^{k_{1}-k_{2}}$ is the message
- $U^{n} \stackrel{\text { iid }}{\sim} \operatorname{Bern}(1 / 2) \quad \Longrightarrow \quad d_{\mathrm{TV}}\left(q_{X^{n}}, \prod \operatorname{Bern}(\alpha)\right) \leq \delta$

P2P Code + Slepian-Wolf Code \longrightarrow Asymmetric Channel Code

- Goal: Code for asymmetric channel $p(y \mid x)$
- Approach: Target $p(x) \sim \operatorname{Bern}(\alpha)$ for some given α.
- Lego bricks:

1. $\left(k_{2}, n\right) \mathrm{P} 2 \mathrm{P}$ code $\left(H_{2}, \phi_{2}\right)$ for $\operatorname{BSC}(\alpha)$ with decoding distance δ
2. $\left(n-k_{1}, n\right)$ Slepian-Wolf code $\left(H_{1}, \phi_{1}\right)$ for $p(x, y)$ with error probability ϵ
3. Two codes are nested s.t. $H_{2}=\left[\begin{array}{c}H_{1} \\ Q\end{array}\right]$.

$$
H_{1} X^{n}=V_{1}^{n-k_{1}}
$$

- $V_{1}^{n-k_{1}} \stackrel{\text { iid }}{\sim} \operatorname{Bern}(1 / 2)$ is shared between encoder and decoder
- $M^{k_{1}-k_{2}}$ is the message
- $U^{n} \stackrel{\text { iid }}{\sim} \operatorname{Bern}(1 / 2) \quad \Longrightarrow \quad d_{\mathrm{TV}}\left(q_{X^{n}}, \Pi \operatorname{Bern}(\alpha)\right) \leq \delta$
- $H_{1} X^{n}=V_{1}^{n-k_{1}}$

P2P Code + Slepian-Wolf Code \longrightarrow Asymmetric Channel Code

- Goal: Code for asymmetric channel $p(y \mid x)$
- Approach: Target $p(x) \sim \operatorname{Bern}(\alpha)$ for some given α.
- Lego bricks:

1. $\left(k_{2}, n\right) \mathrm{P} 2 \mathrm{P}$ code $\left(H_{2}, \phi_{2}\right)$ for $\operatorname{BSC}(\alpha)$ with decoding distance δ
2. $\left(n-k_{1}, n\right)$ Slepian-Wolf code $\left(H_{1}, \phi_{1}\right)$ for $p(x, y)$ with error probability ϵ
3. Two codes are nested s.t. $H_{2}=\left[\begin{array}{c}H_{1} \\ Q\end{array}\right]$.

- $V_{1}^{n-k_{1}} \stackrel{\text { iid }}{\sim} \operatorname{Bern}(1 / 2)$ is shared between encoder and decoder
- $M^{k_{1}-k_{2}}$ is the message
- $U^{n} \stackrel{\text { iid }}{\sim} \operatorname{Bern}(1 / 2) \quad \Longrightarrow \quad d_{\mathrm{TV}}\left(q_{X^{n}}, \Pi \operatorname{Bern}(\alpha)\right) \leq \delta$
- $H_{1} X^{n}=V_{1}^{n-k_{1}}$

P2P Code + Slepian-Wolf Code \longrightarrow Asymmetric Channel Code

- Goal: Code for asymmetric channel $p(y \mid x)$
- Approach: Target $p(x) \sim \operatorname{Bern}(\alpha)$ for some given α.
- Lego bricks:

1. $\left(k_{2}, n\right) \mathrm{P} 2 \mathrm{P}$ code $\left(H_{2}, \phi_{2}\right)$ for $\operatorname{BSC}(\alpha)$ with decoding distance δ
2. $\left(n-k_{1}, n\right)$ Slepian-Wolf code $\left(H_{1}, \phi_{1}\right)$ for $p(x, y)$ with error probability ϵ
3. Two codes are nested s.t. $H_{2}=\left[\begin{array}{c}H_{1} \\ Q\end{array}\right]$.

- $V_{1}^{n-k_{1}} \stackrel{\text { iid }}{\sim} \operatorname{Bern}(1 / 2)$ is shared between encoder and decoder
- $M^{k_{1}-k_{2}}$ is the message
- $U^{n} \stackrel{\text { iid }}{\sim} \operatorname{Bern}(1 / 2) \quad \Longrightarrow \quad d_{\mathrm{TV}}\left(q_{X^{n}}, \Pi \operatorname{Bern}(\alpha)\right) \leq \delta$
- $H_{1} X^{n}=V_{1}^{n-k_{1}}$

P2P Code + Slepian-Wolf Code \longrightarrow Asymmetric Channel Code

- Goal: Code for asymmetric channel $p(y \mid x)$
- Approach: Target $p(x) \sim \operatorname{Bern}(\alpha)$ for some given α.
- Lego bricks:

1. $\left(k_{2}, n\right) \mathrm{P} 2 \mathrm{P}$ code $\left(H_{2}, \phi_{2}\right)$ for $\operatorname{BSC}(\alpha)$ with decoding distance δ
2. $\left(n-k_{1}, n\right)$ Slepian-Wolf code $\left(H_{1}, \phi_{1}\right)$ for $p(x, y)$ with error probability ϵ
3. Two codes are nested s.t. $H_{2}=\left[\begin{array}{c}H_{1} \\ Q\end{array}\right]$.

- $V_{1}^{n-k_{1}} \stackrel{\text { iid }}{\sim} \operatorname{Bern}(1 / 2)$ is shared between encoder and decoder
- $M^{k_{1}-k_{2}}$ is the message
- $U^{n} \stackrel{\text { iid }}{\sim} \operatorname{Bern}(1 / 2) \quad \Longrightarrow \quad d_{\mathrm{TV}}\left(q_{X^{n}}, \Pi \operatorname{Bern}(\alpha)\right) \leq \delta$
- $H_{1} X^{n}=V_{1}^{n-k_{1}}$

P2P Code + Slepian-Wolf Code \longrightarrow Asymmetric Channel Code

- Goal: Code for asymmetric channel $p(y \mid x)$
- Approach: Target $p(x) \sim \operatorname{Bern}(\alpha)$ for some given α.
- Lego bricks:

1. $\left(k_{2}, n\right) \mathrm{P} 2 \mathrm{P}$ code $\left(H_{2}, \phi_{2}\right)$ for $\operatorname{BSC}(\alpha)$ with decoding distance δ
2. $\left(n-k_{1}, n\right)$ Slepian-Wolf code $\left(H_{1}, \phi_{1}\right)$ for $p(x, y)$ with error probability ϵ
3. Two codes are nested s.t. $H_{2}=\left[\begin{array}{c}H_{1} \\ Q\end{array}\right]$.

- $V_{1}^{n-k_{1}} \stackrel{\text { iid }}{\sim} \operatorname{Bern}(1 / 2)$ is shared between encoder and decoder
- $M^{k_{1}-k_{2}}$ is the message
- $U^{n} \stackrel{\text { iid }}{\sim} \operatorname{Bern}(1 / 2) \quad \Longrightarrow \quad d_{\mathrm{TV}}\left(q_{X^{n}}, \Pi \operatorname{Bern}(\alpha)\right) \leq \delta$
- $H_{1} X^{n}=V_{1}^{n-k_{1}}$

P2P Code + Slepian-Wolf Code \longrightarrow Asymmetric Channel Code

- Goal: Code for asymmetric channel $p(y \mid x)$
- Approach: Target $p(x) \sim \operatorname{Bern}(\alpha)$ for some given α.
- Lego bricks:

1. $\left(k_{2}, n\right) \mathrm{P} 2 \mathrm{P}$ code $\left(H_{2}, \phi_{2}\right)$ for $\operatorname{BSC}(\alpha)$ with decoding distance δ
2. $\left(n-k_{1}, n\right)$ Slepian-Wolf code $\left(H_{1}, \phi_{1}\right)$ for $p(x, y)$ with error probability ϵ
3. Two codes are nested s.t. $H_{2}=\left[\begin{array}{c}H_{1} \\ Q\end{array}\right]$.

- $V_{1}^{n-k_{1}} \stackrel{\text { iid }}{\sim} \operatorname{Bern}(1 / 2)$ is shared between encoder and decoder
- $M^{k_{1}-k_{2}}$ is the message
- $U^{n} \stackrel{\text { iid }}{\sim} \operatorname{Bern}(1 / 2) \quad \Longrightarrow \quad d_{\mathrm{TV}}\left(q_{X^{n}}, \Pi \operatorname{Bern}(\alpha)\right) \leq \delta$
- $H_{1} X^{n}=V_{1}^{n-k_{1}}$

P2P Code + Slepian-Wolf Code \longrightarrow Asymmetric Channel Code

- Goal: Code for asymmetric channel $p(y \mid x)$
- Approach: Target $p(x) \sim \operatorname{Bern}(\alpha)$ for some given α.
- Lego bricks:

1. $\left(k_{2}, n\right) \mathrm{P} 2 \mathrm{P}$ code $\left(H_{2}, \phi_{2}\right)$ for $\operatorname{BSC}(\alpha)$ with decoding distance δ
2. $\left(n-k_{1}, n\right)$ Slepian-Wolf code $\left(H_{1}, \phi_{1}\right)$ for $p(x, y)$ with error probability ϵ
3. Two codes are nested s.t. $H_{2}=\left[\begin{array}{c}H_{1} \\ Q\end{array}\right]$.

- $V_{1}^{n-k_{1}} \stackrel{\text { iid }}{\sim} \operatorname{Bern}(1 / 2)$ is shared between encoder and decoder
- $M^{k_{1}-k_{2}}$ is the message
- $U^{n} \stackrel{\text { iid }}{\sim} \operatorname{Bern}(1 / 2) \quad \Longrightarrow \quad d_{\mathrm{TV}}\left(q_{X^{n}}, \Pi \operatorname{Bern}(\alpha)\right) \leq \delta$
- $H_{1} X^{n}=V_{1}^{n-k_{1}}$

P2P Code + Slepian-Wolf Code \longrightarrow Asymmetric Channel Code

- Goal: Code for asymmetric channel $p(y \mid x)$
- Approach: Target $p(x) \sim \operatorname{Bern}(\alpha)$ for some given α.
- Lego bricks:

1. $\left(k_{2}, n\right) \mathrm{P} 2 \mathrm{P}$ code $\left(H_{2}, \phi_{2}\right)$ for $\operatorname{BSC}(\alpha)$ with decoding distance δ
2. $\left(n-k_{1}, n\right)$ Slepian-Wolf code $\left(H_{1}, \phi_{1}\right)$ for $p(x, y)$ with error probability ϵ
3. Two codes are nested s.t. $H_{2}=\left[\begin{array}{c}H_{1} \\ Q\end{array}\right]$.

- $V_{1}^{n-k_{1}} \stackrel{\text { iid }}{\sim} \operatorname{Bern}(1 / 2)$ is shared between encoder and decoder
- $M^{k_{1}-k_{2}}$ is the message
- $U^{n} \stackrel{\text { iid }}{\sim} \operatorname{Bern}(1 / 2) \quad \Longrightarrow \quad d_{\mathrm{TV}}\left(q_{X^{n}}, \Pi \operatorname{Bern}(\alpha)\right) \leq \delta$

Theorem

$$
\begin{aligned}
& R=\frac{k_{1}-k_{2}}{n} \\
& P_{e} \leq \epsilon+\delta
\end{aligned}
$$

- $H_{1} X^{n}=V_{1}^{n-k_{1}}$

Rate Achievability

- \exists a sequence of Slepian-Wolf codes for $p(x, y)$ s.t. $\epsilon \rightarrow 0$ if and only if

$$
\frac{n-k_{1}}{n}>H(X \mid Y)
$$

Rate Achievability

- \exists a sequence of Slepian-Wolf codes for $p(x, y)$ s.t. $\epsilon \rightarrow 0$ if and only if

$$
\frac{n-k_{1}}{n}>H(X \mid Y)
$$

- \exists a sequence of P2P codes for $\operatorname{BSC}(\alpha)$ s.t. $\delta \rightarrow 0$ if and only if

$$
\frac{k_{2}}{n}>1-H(\alpha)=1-H(X)
$$

Rate Achievability

- \exists a sequence of Slepian-Wolf codes for $p(x, y)$ s.t. $\epsilon \rightarrow 0$ if and only if

$$
\frac{n-k_{1}}{n}>H(X \mid Y)
$$

- \exists a sequence of P2P codes for $\operatorname{BSC}(\alpha)$ s.t. $\delta \rightarrow 0$ if and only if

$$
\frac{k_{2}}{n}>1-H(\alpha)=1-H(X)
$$

- Rate $R=\frac{k_{1}-k_{2}}{n}$ can be made arbitrarily close to $I(X ; Y)=H(X)-H(X \mid Y)$.

Outline

- This talk:

Properties

Nested Linearity Error Probability Decoding Distance

Outline

- This talk:

Properties

Nested Linearity Error Probability Decoding Distance

Gelfand-Pinsker Coding

- Channel with state S^{n} available noncausally only at the encoder

$$
\begin{aligned}
& S^{n} \stackrel{\text { iid }}{\sim} p(s) \\
& \text { Encoder } f, \text { Decoder } \xi \\
& \text { Rate } R=k / n \\
& P_{e}=\mathrm{P}\left\{M^{k} \neq \hat{M}^{k}\right\}
\end{aligned}
$$

Gelfand-Pinsker Coding

- Channel with state S^{n} available noncausally only at the encoder

- [Gelfand-Pinsker 1980]: \exists a code (f, ξ) with vanishing P_{e} if

$$
R<\max _{p(x \mid s)}(I(X ; Y)-I(X ; S))
$$

Gelfand-Pinsker Coding

- Channel with state S^{n} available noncausally only at the encoder

$$
\begin{aligned}
& S^{n} \stackrel{\mathrm{iid}}{\sim} p(s) \\
& \text { Encoder } f, \text { Decoder } \xi \\
& \text { Rate } R=k / n \\
& P_{e}=\operatorname{P}\left\{M^{k} \neq \hat{M}^{k}\right\}
\end{aligned}
$$

- [Gelfand-Pinsker 1980]: \exists a code (f, ξ) with vanishing P_{e} if

$$
R<\max _{p(x \mid s)}(I(X ; Y)-I(X ; S))
$$

- Approach: Target a conditional distribution $p(x \mid s)$
- This completely defines $p(x, s)=p(s) p(x \mid s)$

P2P Code + Slepian-Wolf Code \longrightarrow Gelfand-Pinsker Code

- Lego bricks:

1. $\left(k_{2}, n\right)$ P2P code $\left(H_{2}, \phi_{2}\right)$ with decoding distance δ for

$$
\bar{p}(s, v \mid x) \triangleq p_{X, S}(x \oplus v, s)
$$

P2P Code + Slepian-Wolf Code \longrightarrow Gelfand-Pinsker Code

- Lego bricks:

1. $\left(k_{2}, n\right)$ P2P code $\left(H_{2}, \phi_{2}\right)$ with decoding distance δ for $\bar{p}(s, v \mid x) \triangleq p_{X, S}(x \oplus v, s)$
\bar{p} is the "symmetrized channel" of $p(x, s)$

P2P Code + Slepian-Wolf Code \longrightarrow Gelfand-Pinsker Code

- Lego bricks:

1. $\left(k_{2}, n\right)$ P2P code $\left(H_{2}, \phi_{2}\right)$ with decoding distance δ for

$$
\bar{p}(s, v \mid x) \triangleq p_{X, S}(x \oplus v, s)
$$

\bar{p} is the "symmetrized channel" of $p(x, s)$

$$
X^{n}=\phi_{2}\left(S^{n}, U^{n}\right) \oplus U^{n}
$$

```
Lemma
d
```


P2P Code + Slepian-Wolf Code \longrightarrow Gelfand-Pinsker Code

- Lego bricks:

1. $\left(k_{2}, n\right)$ P2P code $\left(H_{2}, \phi_{2}\right)$ with decoding distance δ for $\bar{p}(s, v \mid x) \triangleq p_{X, S}(x \oplus v, s)$
\bar{p} is the "symmetrized channel" of $p(x, s)$

P2P Code + Slepian-Wolf Code \longrightarrow Gelfand-Pinsker Code

- Lego bricks:

1. $\left(k_{2}, n\right) \mathrm{P} 2 \mathrm{P}$ code $\left(H_{2}, \phi_{2}\right)$ with decoding distance δ for

$$
\bar{p}(s, v \mid x) \triangleq p_{X, S}(x \oplus v, s)
$$

\bar{p} is the "symmetrized channel" of $p(x, s)$
2. $\left(n-k_{1}, n\right)$ Slepian-Wolf code $\left(H_{1}, \phi_{1}\right)$ with error probability ϵ

$$
p(x, y)=\sum_{s} p(x, s) p(y \mid x, s)
$$

3. Two codes are nested s.t. $H_{2}=\left[\begin{array}{c}H_{1} \\ Q\end{array}\right]$.

- $V_{1}^{n-k_{1}} \stackrel{\text { iid }}{\sim} \operatorname{Bern}(1 / 2)$ is shared between encoder and decoder
- $M^{k_{1}-k_{2}}$ is the message

P2P Code + Slepian-Wolf Code \longrightarrow Gelfand-Pinsker Code

- Lego bricks:

1. $\left(k_{2}, n\right) \mathrm{P} 2 \mathrm{P}$ code $\left(H_{2}, \phi_{2}\right)$ with decoding distance δ for

$$
\bar{p}(s, v \mid x) \triangleq p_{X, S}(x \oplus v, s)
$$

\bar{p} is the "symmetrized channel" of $p(x, s)$
2. $\left(n-k_{1}, n\right)$ Slepian-Wolf code $\left(H_{1}, \phi_{1}\right)$ with error probability ϵ

$$
p(x, y)=\sum_{s} p(x, s) p(y \mid x, s)
$$

3. Two codes are nested s.t. $H_{2}=\left[\begin{array}{c}H_{1} \\ Q\end{array}\right]$.

- $V_{1}^{n-k_{1}} \stackrel{\text { iid }}{\sim} \operatorname{Bern}(1 / 2)$ is shared between encoder and decoder
- $M^{k_{1}-k_{2}}$ is the message
- $U^{n} \stackrel{\text { iid }}{\sim} \operatorname{Bern}(1 / 2) \quad \Longrightarrow \quad d_{\mathrm{TV}}\left(q_{X^{n}, S^{n}}, \prod p(x, s)\right) \leq \delta$

P2P Code + Slepian-Wolf Code \longrightarrow Gelfand-Pinsker Code

- Lego bricks:

1. $\left(k_{2}, n\right) \mathrm{P} 2 \mathrm{P}$ code $\left(H_{2}, \phi_{2}\right)$ with decoding distance δ for

$$
\bar{p}(s, v \mid x) \triangleq p_{X, S}(x \oplus v, s)
$$

\bar{p} is the "symmetrized channel" of $p(x, s)$
2. $\left(n-k_{1}, n\right)$ Slepian-Wolf code $\left(H_{1}, \phi_{1}\right)$ with error probability ϵ

$$
p(x, y)=\sum_{s} p(x, s) p(y \mid x, s)
$$

3. Two codes are nested s.t. $H_{2}=\left[\begin{array}{c}H_{1} \\ Q\end{array}\right]$.

- $V_{1}^{n-k_{1}} \stackrel{\text { iid }}{\sim} \operatorname{Bern}(1 / 2)$ is shared between encoder and decoder
- $M^{k_{1}-k_{2}}$ is the message
- $U^{n} \stackrel{\text { iid }}{\sim} \operatorname{Bern}(1 / 2) \quad \Longrightarrow \quad d_{\mathrm{TV}}\left(q_{X^{n}, S^{n}}, \prod p(x, s)\right) \leq \delta$

P2P Code + Slepian-Wolf Code \longrightarrow Gelfand-Pinsker Code

- Lego bricks:

1. $\left(k_{2}, n\right) \mathrm{P} 2 \mathrm{P}$ code $\left(H_{2}, \phi_{2}\right)$ with decoding distance δ for

$$
\bar{p}(s, v \mid x) \triangleq p_{X, S}(x \oplus v, s)
$$

\bar{p} is the "symmetrized channel" of $p(x, s)$
2. $\left(n-k_{1}, n\right)$ Slepian-Wolf code $\left(H_{1}, \phi_{1}\right)$ with error probability ϵ

$$
p(x, y)=\sum_{s} p(x, s) p(y \mid x, s)
$$

3. Two codes are nested s.t. $H_{2}=\left[\begin{array}{c}H_{1} \\ Q\end{array}\right]$.

$$
H_{1} X^{n}=V_{1}^{n-k_{1}}
$$

- $V_{1}^{n-k_{1}} \stackrel{\text { iid }}{\sim} \operatorname{Bern}(1 / 2)$ is shared between encoder and decoder
- $M^{k_{1}-k_{2}}$ is the message
- $U^{n} \stackrel{\text { iid }}{\sim} \operatorname{Bern}(1 / 2) \quad \Longrightarrow \quad d_{\mathrm{TV}}\left(q_{X^{n}, S^{n}}, \prod p(x, s)\right) \leq \delta$
- $H_{1} X^{n}=V_{1}^{n-k_{1}}$

P2P Code + Slepian-Wolf Code \longrightarrow Gelfand-Pinsker Code

- Lego bricks:

1. $\left(k_{2}, n\right) \mathrm{P} 2 \mathrm{P}$ code $\left(H_{2}, \phi_{2}\right)$ with decoding distance δ for

$$
\bar{p}(s, v \mid x) \triangleq p_{X, S}(x \oplus v, s)
$$

\bar{p} is the "symmetrized channel" of $p(x, s)$
2. $\left(n-k_{1}, n\right)$ Slepian-Wolf code $\left(H_{1}, \phi_{1}\right)$ with error probability ϵ

$$
p(x, y)=\sum_{s} p(x, s) p(y \mid x, s)
$$

3. Two codes are nested s.t. $H_{2}=\left[\begin{array}{c}H_{1} \\ Q\end{array}\right]$.

- $V_{1}^{n-k_{1}} \stackrel{\text { iid }}{\sim} \operatorname{Bern}(1 / 2)$ is shared between encoder and decoder
- $M^{k_{1}-k_{2}}$ is the message
- $U^{n} \stackrel{\text { iid }}{\sim} \operatorname{Bern}(1 / 2) \quad \Longrightarrow \quad d_{\mathrm{TV}}\left(q_{X^{n}, S^{n}}, \prod p(x, s)\right) \leq \delta$
- $H_{1} X^{n}=V_{1}^{n-k_{1}}$

P2P Code + Slepian-Wolf Code \longrightarrow Gelfand-Pinsker Code

- Lego bricks:

1. $\left(k_{2}, n\right) \mathrm{P} 2 \mathrm{P}$ code $\left(H_{2}, \phi_{2}\right)$ with decoding distance δ for

$$
\bar{p}(s, v \mid x) \triangleq p_{X, S}(x \oplus v, s)
$$

\bar{p} is the "symmetrized channel" of $p(x, s)$
2. $\left(n-k_{1}, n\right)$ Slepian-Wolf code $\left(H_{1}, \phi_{1}\right)$ with error probability ϵ

$$
p(x, y)=\sum_{s} p(x, s) p(y \mid x, s)
$$

3. Two codes are nested s.t. $H_{2}=\left[\begin{array}{c}H_{1} \\ Q\end{array}\right]$.

- $V_{1}^{n-k_{1}} \stackrel{\text { iid }}{\sim} \operatorname{Bern}(1 / 2)$ is shared between encoder and decoder
- $M^{k_{1}-k_{2}}$ is the message
- $U^{n} \stackrel{\text { iid }}{\sim} \operatorname{Bern}(1 / 2) \quad \Longrightarrow \quad d_{\mathrm{TV}}\left(q_{X^{n}, S^{n}}, \prod p(x, s)\right) \leq \delta$
- $H_{1} X^{n}=V_{1}^{n-k_{1}}$

P2P Code + Slepian-Wolf Code \longrightarrow Gelfand-Pinsker Code

- Lego bricks:

1. $\left(k_{2}, n\right) \mathrm{P} 2 \mathrm{P}$ code $\left(H_{2}, \phi_{2}\right)$ with decoding distance δ for

$$
\bar{p}(s, v \mid x) \triangleq p_{X, S}(x \oplus v, s)
$$

\bar{p} is the "symmetrized channel" of $p(x, s)$
2. $\left(n-k_{1}, n\right)$ Slepian-Wolf code $\left(H_{1}, \phi_{1}\right)$ with error probability ϵ

$$
p(x, y)=\sum_{s} p(x, s) p(y \mid x, s)
$$

3. Two codes are nested s.t. $H_{2}=\left[\begin{array}{c}H_{1} \\ Q\end{array}\right]$.

- $V_{1}^{n-k_{1}} \stackrel{\text { iid }}{\sim} \operatorname{Bern}(1 / 2)$ is shared between encoder and decoder
- $M^{k_{1}-k_{2}}$ is the message
- $U^{n} \stackrel{\mathrm{iid}}{\sim} \operatorname{Bern}(1 / 2) \quad \Longrightarrow \quad d_{\mathrm{TV}}\left(q_{X^{n}, S^{n}}, \prod p(x, s)\right) \leq \delta$
- $H_{1} X^{n}=V_{1}^{n-k_{1}}$

P2P Code + Slepian-Wolf Code \longrightarrow Gelfand-Pinsker Code

- Lego bricks:

1. $\left(k_{2}, n\right) \mathrm{P} 2 \mathrm{P}$ code $\left(H_{2}, \phi_{2}\right)$ with decoding distance δ for

$$
\bar{p}(s, v \mid x) \triangleq p_{X, S}(x \oplus v, s)
$$

\bar{p} is the "symmetrized channel" of $p(x, s)$
2. $\left(n-k_{1}, n\right)$ Slepian-Wolf code $\left(H_{1}, \phi_{1}\right)$ with error probability ϵ

$$
p(x, y)=\sum_{s} p(x, s) p(y \mid x, s)
$$

3. Two codes are nested s.t. $H_{2}=\left[\begin{array}{c}H_{1} \\ Q\end{array}\right]$.

- $V_{1}^{n-k_{1}} \stackrel{\text { iid }}{\sim} \operatorname{Bern}(1 / 2)$ is shared between encoder and decoder
- $M^{k_{1}-k_{2}}$ is the message
- $U^{n} \stackrel{\text { iid }}{\sim} \operatorname{Bern}(1 / 2) \quad \Longrightarrow \quad d_{\mathrm{TV}}\left(q_{X^{n}, S^{n}}, \prod p(x, s)\right) \leq \delta$
- $H_{1} X^{n}=V_{1}^{n-k_{1}}$

P2P Code + Slepian-Wolf Code \longrightarrow Gelfand-Pinsker Code

- Lego bricks:

1. $\left(k_{2}, n\right) \mathrm{P} 2 \mathrm{P}$ code $\left(H_{2}, \phi_{2}\right)$ with decoding distance δ for

$$
\bar{p}(s, v \mid x) \triangleq p_{X, S}(x \oplus v, s)
$$

\bar{p} is the "symmetrized channel" of $p(x, s)$
2. $\left(n-k_{1}, n\right)$ Slepian-Wolf code $\left(H_{1}, \phi_{1}\right)$ with error probability ϵ

$$
p(x, y)=\sum_{s} p(x, s) p(y \mid x, s)
$$

3. Two codes are nested s.t. $H_{2}=\left[\begin{array}{c}H_{1} \\ Q\end{array}\right]$.

- $V_{1}^{n-k_{1}} \stackrel{\text { iid }}{\sim} \operatorname{Bern}(1 / 2)$ is shared between encoder and decoder
- $M^{k_{1}-k_{2}}$ is the message
- $U^{n} \stackrel{\text { iid }}{\sim} \operatorname{Bern}(1 / 2) \quad \Longrightarrow \quad d_{\mathrm{TV}}\left(q_{X^{n}, S^{n}}, \prod p(x, s)\right) \leq \delta$
- $H_{1} X^{n}=V_{1}^{n-k_{1}}$

P2P Code + Slepian-Wolf Code \longrightarrow Gelfand-Pinsker Code

- Lego bricks:

1. $\left(k_{2}, n\right) \mathrm{P} 2 \mathrm{P}$ code $\left(H_{2}, \phi_{2}\right)$ with decoding distance δ for

$$
\bar{p}(s, v \mid x) \triangleq p_{X, S}(x \oplus v, s)
$$

\bar{p} is the "symmetrized channel" of $p(x, s)$
2. $\left(n-k_{1}, n\right)$ Slepian-Wolf code $\left(H_{1}, \phi_{1}\right)$ with error probability ϵ

$$
p(x, y)=\sum_{s} p(x, s) p(y \mid x, s)
$$

3. Two codes are nested s.t. $H_{2}=\left[\begin{array}{c}H_{1} \\ Q\end{array}\right]$.

- $V_{1}^{n-k_{1}} \stackrel{\text { iid }}{\sim} \operatorname{Bern}(1 / 2)$ is shared between encoder and decoder
- $M^{k_{1}-k_{2}}$ is the message
- $U^{n} \stackrel{\text { iid }}{\sim} \operatorname{Bern}(1 / 2) \quad \Longrightarrow \quad d_{\mathrm{TV}}\left(q_{X^{n}, S^{n}}, \prod p(x, s)\right) \leq \delta$
- $H_{1} X^{n}=V_{1}^{n-k_{1}}$

P2P Code + Slepian-Wolf Code \longrightarrow Gelfand-Pinsker Code

- Lego bricks:

1. $\left(k_{2}, n\right) \mathrm{P} 2 \mathrm{P}$ code $\left(H_{2}, \phi_{2}\right)$ with decoding distance δ for

$$
\bar{p}(s, v \mid x) \triangleq p_{X, S}(x \oplus v, s)
$$

\bar{p} is the "symmetrized channel" of $p(x, s)$
2. $\left(n-k_{1}, n\right)$ Slepian-Wolf code $\left(H_{1}, \phi_{1}\right)$ with error probability ϵ

$$
p(x, y)=\sum_{s} p(x, s) p(y \mid x, s)
$$

3. Two codes are nested s.t. $H_{2}=\left[\begin{array}{c}H_{1} \\ Q\end{array}\right]$.

- $V_{1}^{n-k_{1}} \stackrel{\text { iid }}{\sim} \operatorname{Bern}(1 / 2)$ is shared between encoder and decoder
- $M^{k_{1}-k_{2}}$ is the message
- $U^{n} \stackrel{\text { iid }}{\sim} \operatorname{Bern}(1 / 2) \quad \Longrightarrow \quad d_{\mathrm{TV}}\left(q_{X^{n}, S^{n}}, \prod p(x, s)\right) \leq \delta$
- $H_{1} X^{n}=V_{1}^{n-k_{1}}$

Theorem

$$
\begin{aligned}
& R=\frac{k_{1}-k_{2}}{n} \\
& P_{e} \leq \epsilon+\delta
\end{aligned}
$$

Rate Achievability

- \exists a sequence of Slepian-Wolf codes for $p(x, y)$ s.t. $\epsilon \rightarrow 0$ if and only if

$$
\frac{n-k_{1}}{n}>H(X \mid Y)
$$

Rate Achievability

- \exists a sequence of Slepian-Wolf codes for $p(x, y)$ s.t. $\epsilon \rightarrow 0$ if and only if

$$
\frac{n-k_{1}}{n}>H(X \mid Y)
$$

- \exists a sequence of P2P codes for the symmetrized channel \bar{p} s.t. $\delta \rightarrow 0$ if and only if

$$
\frac{k_{2}}{n}>1-H(X \mid S)
$$

Rate Achievability

- \exists a sequence of Slepian-Wolf codes for $p(x, y)$ s.t. $\epsilon \rightarrow 0$ if and only if

$$
\frac{n-k_{1}}{n}>H(X \mid Y)
$$

- \exists a sequence of P2P codes for the symmetrized channel \bar{p} s.t. $\delta \rightarrow 0$ if and only if

$$
\frac{k_{2}}{n}>1-H(X \mid S)
$$

- Rate $R=\frac{k_{1}-k_{2}}{n}$ can be made arbitrarily close to

$$
H(X \mid S)-H(X \mid Y)=I(X ; Y)-I(X ; S)
$$

Outline

- This talk:

Properties

Nested Linearity Error Probability Decoding Distance

Outline

- This talk:

Properties

Nested Linearity Error Probability Decoding Distance

Marton Coding for Broadcast Channels

- Goal: Code for 2-user broadcast channel $p\left(y_{1}, y_{2} \mid x_{1}, x_{2}\right)$ with two transmit antennas

Marton Coding for Broadcast Channels

- Goal: Code for 2-user broadcast channel $p\left(y_{1}, y_{2} \mid x_{1}, x_{2}\right)$ with two transmit antennas

Marton Coding for Broadcast Channels

- Goal: Code for 2-user broadcast channel $p\left(y_{1}, y_{2} \mid x_{1}, x_{2}\right)$ with two transmit antennas

- [Marton 1979]: \exists encoder and decoders with vanishing P_{e} for rates $\left(R_{1}, R_{2}\right)$ if

$$
\begin{aligned}
R_{1} & <I\left(X_{1} ; Y_{1}\right) \\
R_{2} & <I\left(X_{2} ; Y_{2}\right) \\
R_{1}+R_{2} & <I\left(X_{1} ; Y_{1}\right)+I\left(X_{2} ; Y_{2}\right)-I\left(X_{1} ; X_{2}\right)
\end{aligned}
$$

for some input distribution $p\left(x_{1}, x_{2}\right)$

Marton Coding for Broadcast Channels

- Approach: Target a channel input distribution $p\left(x_{1}, x_{2}\right)$.
- This completely defines

$$
p\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=p\left(x_{1}, x_{2}\right) p\left(y_{1}, y_{2} \mid x_{1}, x_{2}\right)
$$

Marton Coding for Broadcast Channels

- Approach: Target a channel input distribution $p\left(x_{1}, x_{2}\right)$.
- This completely defines

$$
p\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=p\left(x_{1}, x_{2}\right) p\left(y_{1}, y_{2} \mid x_{1}, x_{2}\right)
$$

- Lego bricks:
- $\left(R_{1}, n\right)$ asymmetric channel code for channel $X_{1} \rightarrow Y_{1}$ with error probability ϵ_{1}
- $\left(R_{2}, n\right)$ Gelfand-Pinsker code for $X_{2} \rightarrow Y_{2}$ with available "state" X_{1} at the encoder with error probability ϵ_{2}

Marton Coding for Broadcast Channels

- Approach: Target a channel input distribution $p\left(x_{1}, x_{2}\right)$.
- This completely defines

$$
p\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=p\left(x_{1}, x_{2}\right) p\left(y_{1}, y_{2} \mid x_{1}, x_{2}\right)
$$

- Lego bricks:
- $\left(R_{1}, n\right)$ asymmetric channel code for channel $X_{1} \rightarrow Y_{1}$ with error probability ϵ_{1}
- $\left(R_{2}, n\right)$ Gelfand-Pinsker code for $X_{2} \rightarrow Y_{2}$ with available "state" X_{1} at the encoder with error probability ϵ_{2}

- Error probability $P_{e} \leq \epsilon_{1}+\epsilon_{2}$
- Can achieve a corner point in Marton's rate region

Outline

- This talk:

Properties

Nested Linearity Error Probability Decoding Distance

- Marton code can be implemented using four P2P codes for BMS channels

Simulation Results: Marton Coding

- Two-user broadcast channel

$$
\left[\begin{array}{l}
Y_{1} \\
Y_{2}
\end{array}\right]=H_{\mathrm{ch}} W\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]+\left[\begin{array}{l}
Z_{1} \\
Z_{2}
\end{array}\right]
$$

where:

- $\left(X_{1}, X_{2}\right) \in\{ \pm 1\}^{2}$
- $H_{\mathrm{ch}}=\left[\begin{array}{ll}1 & g \\ g & 1\end{array}\right]$ is the channel gain matrix
- W is a 2×2 precoding matrix used by the transmitter (if needed)
- $Z_{1}, Z_{2} \sim \mathcal{N}(0,1)$ are independent
- Encoder is subject to a sum-power constraint P such that

$$
\mathrm{E}\left[\left\|W X_{1}^{2}\right\|^{2}\right] \leq P
$$

- We use $g=0.9$.
- Marton Coding: target a channel input distribution $p\left(x_{1}, x_{2}\right)$

Coding Strategies Over Broadcast Channel

- Maximum achievable sum-rate:

$$
R_{\text {sum }, \max }\left(p\left(x_{1}, x_{2}\right), W\right) \triangleq I\left(X_{1} ; Y_{1}\right)+I\left(X_{2} ; Y_{2}\right)-I\left(X_{1} ; X_{2}\right)
$$

Coding Strategies Over Broadcast Channel

- Maximum achievable sum-rate:

$$
R_{\text {sum }, \max }\left(p\left(x_{1}, x_{2}\right), W\right) \triangleq I\left(X_{1} ; Y_{1}\right)+I\left(X_{2} ; Y_{2}\right)-I\left(X_{1} ; X_{2}\right)
$$

- Coding strategies:

1. Marton coding with optimal precoding
2. Marton coding without precoding
3. Symmetric coding with optimal precoding
4. Symmetric coding with MMSE precoding
5. Time division

Coding Strategies Over Broadcast Channel

- Maximum achievable sum-rate:

$$
R_{\text {sum }, \max }\left(p\left(x_{1}, x_{2}\right), W\right) \triangleq I\left(X_{1} ; Y_{1}\right)+I\left(X_{2} ; Y_{2}\right)-I\left(X_{1} ; X_{2}\right)
$$

- Coding strategies:

1. Marton coding with optimal precoding
\Rightarrow target $p\left(x_{1}, x_{2}\right)$ and W that maximize $R_{\text {sum,max }}$
2. Marton coding without precoding
3. Symmetric coding with optimal precoding
4. Symmetric coding with MMSE precoding
5. Time division

Coding Strategies Over Broadcast Channel

- Maximum achievable sum-rate:

$$
R_{\text {sum }, \max }\left(p\left(x_{1}, x_{2}\right), W\right) \triangleq I\left(X_{1} ; Y_{1}\right)+I\left(X_{2} ; Y_{2}\right)-I\left(X_{1} ; X_{2}\right)
$$

- Coding strategies:

1. Marton coding with optimal precoding
\Rightarrow target $p\left(x_{1}, x_{2}\right)$ and W that maximize $R_{\text {sum,max }}$
2. Marton coding without precoding
\Rightarrow set $W=\sqrt{\frac{P}{2}} \mathbf{I}$ and target $p\left(x_{1}, x_{2}\right)$ that maximizes $R_{\text {sum }, \max }$
3. Symmetric coding with optimal precoding
4. Symmetric coding with MMSE precoding
5. Time division

Coding Strategies Over Broadcast Channel

- Maximum achievable sum-rate:

$$
R_{\text {sum }, \max }\left(p\left(x_{1}, x_{2}\right), W\right) \triangleq I\left(X_{1} ; Y_{1}\right)+I\left(X_{2} ; Y_{2}\right)-I\left(X_{1} ; X_{2}\right)
$$

- Coding strategies:

1. Marton coding with optimal precoding
\Rightarrow target $p\left(x_{1}, x_{2}\right)$ and W that maximize $R_{\text {sum,max }}$
2. Marton coding without precoding
\Rightarrow set $W=\sqrt{\frac{P}{2}} \mathbf{I}$ and target $p\left(x_{1}, x_{2}\right)$ that maximizes $R_{\text {sum, max }}$
3. Symmetric coding with optimal precoding
\Rightarrow Set $p\left(x_{1}, x_{2}\right)=1 / 4$ for each $\left(x_{1}, x_{2}\right)$, and target W that maximizes $R_{\text {sum,max }}$
4. Symmetric coding with MMSE precoding
5. Time division

Coding Strategies Over Broadcast Channel

- Maximum achievable sum-rate:

$$
R_{\text {sum }, \max }\left(p\left(x_{1}, x_{2}\right), W\right) \triangleq I\left(X_{1} ; Y_{1}\right)+I\left(X_{2} ; Y_{2}\right)-I\left(X_{1} ; X_{2}\right)
$$

- Coding strategies:

1. Marton coding with optimal precoding
\Rightarrow target $p\left(x_{1}, x_{2}\right)$ and W that maximize $R_{\text {sum,max }}$
2. Marton coding without precoding
\Rightarrow set $W=\sqrt{\frac{P}{2}} \mathbf{I}$ and target $p\left(x_{1}, x_{2}\right)$ that maximizes $R_{\text {sum, max }}$
3. Symmetric coding with optimal precoding
\Rightarrow Set $p\left(x_{1}, x_{2}\right)=1 / 4$ for each $\left(x_{1}, x_{2}\right)$, and target W that maximizes $R_{\text {sum,max }}$
4. Symmetric coding with MMSE precoding
\Rightarrow Set $p\left(x_{1}, x_{2}\right)=1 / 4$ for each $\left(x_{1}, x_{2}\right)$, and $W=\left(H_{\mathrm{ch}}^{T} H_{\mathrm{ch}}+\frac{2}{P} \mathbf{I}\right)^{-1} H_{\mathrm{ch}}^{T}$
5. Time division

Coding Strategies Over Broadcast Channel

- Maximum achievable sum-rate:

$$
R_{\text {sum }, \max }\left(p\left(x_{1}, x_{2}\right), W\right) \triangleq I\left(X_{1} ; Y_{1}\right)+I\left(X_{2} ; Y_{2}\right)-I\left(X_{1} ; X_{2}\right)
$$

- Coding strategies:

1. Marton coding with optimal precoding
\Rightarrow target $p\left(x_{1}, x_{2}\right)$ and W that maximize $R_{\text {sum,max }}$
2. Marton coding without precoding
\Rightarrow set $W=\sqrt{\frac{P}{2}} \mathbf{I}$ and target $p\left(x_{1}, x_{2}\right)$ that maximizes $R_{\text {sum }, \max }$
3. Symmetric coding with optimal precoding
\Rightarrow Set $p\left(x_{1}, x_{2}\right)=1 / 4$ for each $\left(x_{1}, x_{2}\right)$, and target W that maximizes $R_{\text {sum,max }}$
4. Symmetric coding with MMSE precoding
\Rightarrow Set $p\left(x_{1}, x_{2}\right)=1 / 4$ for each $\left(x_{1}, x_{2}\right)$, and $W=\left(H_{\mathrm{ch}}^{T} H_{\mathrm{ch}}+\frac{2}{P} \mathbf{I}\right)^{-1} H_{\mathrm{ch}}^{T}$

5. Time division

\Rightarrow communicate to only one user in the channel

Maximum Achievable Sum-Rates

Simulations, $n=1024, R_{\text {sum }}=1$

- Use polar codes with SC decoding (rates chosen "close" to theoretical limits)

Code Constructions

Code Constructions

- All coding schemes can be constructed starting from P2P codes for BMS channels.
- All constructions are rate-optimal if the constituent Lego bricks are rate-optimal.*

Concluding Remarks

- Lego-brick code design:

Concluding Remarks

- Lego-brick code design:

Concluding Remarks

- Lego-brick code design:

Properties

Nested Linearity Error Probability Decoding Distance

Concluding Remarks

- Lego-brick code design:

Properties

Nested Linearity Error Probability Decoding Distance

- Future directions

1. Channels with non-binary inputs \Longrightarrow coded modulation
2. Networks with large (unknown) number of users: random access?
3. Design of codes with a good decoding distance

Concluding Remarks

- Lego-brick code design:

Code for a network

Properties

Nested Linearity Error Probability Decoding Distance

- Future directions

1. Channels with non-binary inputs \Longrightarrow coded modulation
2. Networks with large (unknown) number of users: random access?
3. Design of codes with a good decoding distance

- ArXiv paper: https://arxiv.org/abs/2211.07208
- Simulation code: https://github.com/nadimgh/lego-brick

Acknowledgments

- Prof. Young-Han Kim

Acknowledgments

- Prof. Young-Han Kim
- Prof. Larry Milstein

Acknowledgments

- Prof. Young-Han Kim
- Prof. Larry Milstein
- Prof. Paul Siegel, Prof. Arya Mazumdar, Prof. Alireza Salehi Golsefidy

Acknowledgments

- Prof. Young-Han Kim
- Prof. Larry Milstein
- Prof. Paul Siegel, Prof. Arya Mazumdar, Prof. Alireza Salehi Golsefidy
- Prof. Alexander Vardy

Acknowledgments

- Prof. Young-Han Kim
- Prof. Larry Milstein
- Prof. Paul Siegel, Prof. Arya Mazumdar, Prof. Alireza Salehi Golsefidy
- Prof. Alexander Vardy
- Prof. Lele Wang

Acknowledgments

- Prof. Young-Han Kim
- Prof. Larry Milstein
- Prof. Paul Siegel, Prof. Arya Mazumdar, Prof. Alireza Salehi Golsefidy
- Prof. Alexander Vardy
- Prof. Lele Wang
- Funding: InterDigital (Dr. Liangping Ma), ETRI

Acknowledgments

- Prof. Young-Han Kim
- Prof. Larry Milstein
- Prof. Paul Siegel, Prof. Arya Mazumdar, Prof. Alireza Salehi Golsefidy
- Prof. Alexander Vardy
- Prof. Lele Wang
- Funding: InterDigital (Dr. Liangping Ma), ETRI
- Internship: Samsung (Dr. Hamid Saber, Dr. Jung Hyun Bae), Qualcomm (Dr. Ari Klein)

Acknowledgments

- Prof. Young-Han Kim
- Prof. Larry Milstein
- Prof. Paul Siegel, Prof. Arya Mazumdar, Prof. Alireza Salehi Golsefidy
- Prof. Alexander Vardy
- Prof. Lele Wang
- Funding: InterDigital (Dr. Liangping Ma), ETRI
- Internship: Samsung (Dr. Hamid Saber, Dr. Jung Hyun Bae), Qualcomm (Dr. Ari Klein)
- Labmates: Alankrita, Jiun-Ting, Jongha, Pinar, Shouvik

Acknowledgments

- Prof. Young-Han Kim
- Prof. Larry Milstein
- Prof. Paul Siegel, Prof. Arya Mazumdar, Prof. Alireza Salehi Golsefidy
- Prof. Alexander Vardy
- Prof. Lele Wang
- Funding: InterDigital (Dr. Liangping Ma), ETRI
- Internship: Samsung (Dr. Hamid Saber, Dr. Jung Hyun Bae), Qualcomm (Dr. Ari Klein)
- Labmates: Alankrita, Jiun-Ting, Jongha, Pinar, Shouvik
- UCSD: Rohan, Sukanya, Aditya, Anwesan, Shahar, Raghu, Yuhan, Muhammad, Mouna, Ahmed, Hanwen, Govind, Sheel, Pranav

Acknowledgments

- Prof. Young-Han Kim
- Prof. Larry Milstein
- Prof. Paul Siegel, Prof. Arya Mazumdar, Prof. Alireza Salehi Golsefidy
- Prof. Alexander Vardy
- Prof. Lele Wang
- Funding: InterDigital (Dr. Liangping Ma), ETRI
- Internship: Samsung (Dr. Hamid Saber, Dr. Jung Hyun Bae), Qualcomm (Dr. Ari Klein)
- Labmates: Alankrita, Jiun-Ting, Jongha, Pinar, Shouvik
- UCSD: Rohan, Sukanya, Aditya, Anwesan, Shahar, Raghu, Yuhan, Muhammad, Mouna, Ahmed, Hanwen, Govind, Sheel, Pranav
- AUB: Abed, Wajeb, Rami, Mounib, Razan, Kassir, Taha, and Natali

Acknowledgments

- Prof. Young-Han Kim
- Prof. Larry Milstein
- Prof. Paul Siegel, Prof. Arya Mazumdar, Prof. Alireza Salehi Golsefidy
- Prof. Alexander Vardy
- Prof. Lele Wang
- Funding: InterDigital (Dr. Liangping Ma), ETRI
- Internship: Samsung (Dr. Hamid Saber, Dr. Jung Hyun Bae), Qualcomm (Dr. Ari Klein)
- Labmates: Alankrita, Jiun-Ting, Jongha, Pinar, Shouvik
- UCSD: Rohan, Sukanya, Aditya, Anwesan, Shahar, Raghu, Yuhan, Muhammad, Mouna, Ahmed, Hanwen, Govind, Sheel, Pranav
- AUB: Abed, Wajeb, Rami, Mounib, Razan, Kassir, Taha, and Natali
- EPFL: Rakshita

Acknowledgments

- Prof. Young-Han Kim
- Prof. Larry Milstein
- Prof. Paul Siegel, Prof. Arya Mazumdar, Prof. Alireza Salehi Golsefidy
- Prof. Alexander Vardy
- Prof. Lele Wang
- Funding: InterDigital (Dr. Liangping Ma), ETRI
- Internship: Samsung (Dr. Hamid Saber, Dr. Jung Hyun Bae), Qualcomm (Dr. Ari Klein)
- Labmates: Alankrita, Jiun-Ting, Jongha, Pinar, Shouvik
- UCSD: Rohan, Sukanya, Aditya, Anwesan, Shahar, Raghu, Yuhan, Muhammad, Mouna, Ahmed, Hanwen, Govind, Sheel, Pranav
- AUB: Abed, Wajeb, Rami, Mounib, Razan, Kassir, Taha, and Natali
- EPFL: Rakshita
- Cousins: Manal, Ali, Leila

Acknowledgments

- Prof. Young-Han Kim
- Prof. Larry Milstein
- Prof. Paul Siegel, Prof. Arya Mazumdar, Prof. Alireza Salehi Golsefidy
- Prof. Alexander Vardy
- Prof. Lele Wang
- Funding: InterDigital (Dr. Liangping Ma), ETRI
- Internship: Samsung (Dr. Hamid Saber, Dr. Jung Hyun Bae), Qualcomm (Dr. Ari Klein)
- Labmates: Alankrita, Jiun-Ting, Jongha, Pinar, Shouvik
- UCSD: Rohan, Sukanya, Aditya, Anwesan, Shahar, Raghu, Yuhan, Muhammad, Mouna, Ahmed, Hanwen, Govind, Sheel, Pranav
- AUB: Abed, Wajeb, Rami, Mounib, Razan, Kassir, Taha, and Natali
- EPFL: Rakshita
- Cousins: Manal, Ali, Leila
- My heart: Baba, Mama, Fattouma, Hammoudi

The best

