A Lego-Brick Approach to Lossy Source Coding

Nadim Ghaddar University of California San Diego

Collaborators: Shouvik Ganguly & Lele Wang & Young-Han Kim

Graduation-Day Talk

Information Theory and Applications (ITA) Workshop

May 2022

Lossy Source Coding Problem

Setup:

- Compression of a source with some less-than-perfect fidelity
- **•** Encoder g, decoder ψ , rate R, distortion level D
- Problem: Given (n, R, θ, D) , design (g, ψ) s.t. $\frac{1}{n} E[d_H(X^n, \hat{X}^n)] \leq D$

$$
X^n \stackrel{\text{iid}}{\sim} \text{Bern}(\theta) \qquad \qquad B \quad \text{M} \in [2^{nR}] \qquad \qquad \widehat{X}^n
$$

Lossy Source Coding Problem

• Setup:

- Compression of a source with some less-than-perfect fidelity
- **•** Encoder g, decoder ψ , rate R, distortion level D
- Problem: Given (n, R, θ, D) , design (g, ψ) s.t. $\frac{1}{n} E[d_H(X^n, \hat{X}^n)] \leq D$

$$
X^n \stackrel{\text{iid}}{\sim} \text{Bern}(\theta) \qquad \qquad B \quad \text{M} \in [2^{nR}] \qquad \qquad \theta
$$

• Rate-distortion bound: $R \ge R(D) \triangleq \max\{H(\theta) - H(D), 0\}$

Lossy Source Coding Problem

• Setup:

- Compression of a source with some less-than-perfect fidelity
- **•** Encoder g , decoder ψ , rate R, distortion level D
- Problem: Given (n, R, θ, D) , design (g, ψ) s.t. $\frac{1}{n} E[d_H(X^n, \hat{X}^n)] \leq D$

$$
X^n \stackrel{\text{iid}}{\sim} \text{Bern}(\theta) \qquad \qquad B \qquad \qquad \frac{M \in [2^{nR}]}{g} \qquad \psi \qquad \qquad \widehat{X}^n
$$

- Rate-distortion bound: $R > R(D) \triangleq \max\{H(\theta) H(D), 0\}$
- Coding schemes based on point-to-point channel codes:
	- Trellis-based quantizers [Viterbi-Omura'74]
	- LDPC codes with large CN degrees and optimal encoding [Matsunaga-Yamamoto'03]
	- LDGM codes with message-passing encoding [Wainwright-Maneva'05]
	- Polar codes [Korada-Urbanke'10]

· · ·

Lego-Brick Approach to Coding

Question: What properties should P2P codes satisfy to be used for lossy source coding?

Lego-Brick Approach to Coding

Question: What properties should P2P codes satisfy to be used for lossy source coding?

"Lego-brick" approach to coding: Assemble codes in one communication setting \implies A code in a different setting

Lego-Brick Approach to Coding

Question: What properties should P2P codes satisfy to be used for lossy source coding?

"Lego-brick" approach to coding: Assemble codes in one communication setting \implies A code in a different setting

For a given coding problem,

- What "Lego bricks" to assemble, and what properties should they satisfy?
- How to assemble Lego bricks?
- How do performance guarantees translate?

Lego Bricks

Basic Lego Bricks:

- P2P code (H, ϕ) for symmetric DMC
- Parity-check matrix H , decoder ϕ
- Dimension k , blocklength n
- Probability of error ϵ
- · · ·

- **•** Shared random dither
- **·** Interleaver

Lego Bricks

• Basic Lego Bricks:

- P2P code (H, ϕ) for symmetric DMC
- Parity-check matrix H , decoder ϕ
- Dimension k , blocklength n
- Probability of error ϵ

· · ·

• Shared random dither

o Interleaver

Notation: WLOG, let $H = \begin{bmatrix} A & B \end{bmatrix}$ where B is nonsingular, and denote

$$
\widetilde{H} = \begin{bmatrix} \mathbf{0} \\ B^{-1}H \end{bmatrix}.
$$

- Lossy source coding problem:
	- Let $X^n \stackrel{\text{iid}}{\sim} \text{Bern}(\theta)$.
	- Goal: Compression of X^n with expected distortion $D \in [0, \theta]$.

\bullet Approach: Target a conditional distribution $p(x | \hat{x}) \sim \text{BSC}(D)$.

- Lossy source coding problem:
	- Let $X^n \stackrel{\text{iid}}{\sim} \text{Bern}(\theta)$.
	- Goal: Compression of X^n with expected distortion $D \in [0, \theta]$.
- \bullet Approach: Target a conditional distribution $p(x|\hat{x}) \sim \text{BSC}(D)$.
- **•** Lego bricks:
	- 1. A (k_1, n, ϵ) P2P code (H_1, ϕ_1) for $\text{BSC}(\alpha)$, where $\alpha = \frac{\theta D}{1 2D}$

- Lossy source coding problem:
	- Let $X^n \stackrel{\text{iid}}{\sim} \text{Bern}(\theta)$.
	- Goal: Compression of X^n with expected distortion $D \in [0, \theta]$.
- Approach: Target a conditional distribution $p(x | \hat{x}) \sim \text{BSC}(D)$.
- **·** Lego bricks:
	- 1. A (k_1, n, ϵ) P2P code (H_1, ϕ_1) for $\text{BSC}(\alpha)$, where $\alpha = \frac{\theta D}{1 2D}$
	- 2. A (k_2, n, δ) P2P code (H_2, ϕ_2) for

$$
q(x, v | \hat{x}) \triangleq p_{X, \hat{X}}(\hat{x} \oplus v, x)
$$

s.t. for $X^n\stackrel{\rm iid}{\sim} \mathrm{Bern}(\theta)$, $V^n\stackrel{\rm iid}{\sim} \mathrm{Bern}(1/2)$ and $U^n=\phi_2\left(X^n,V^n\right)\oplus V^n$, we have $d_{TV}(p_{X^n, U^n}, \prod p_{X,\widehat{X}}) \leq \delta$ (*)

- Lossy source coding problem:
	- Let $X^n \stackrel{\text{iid}}{\sim} \text{Bern}(\theta)$.
	- Goal: Compression of X^n with expected distortion $D \in [0, \theta]$.
- \bullet Approach: Target a conditional distribution $p(x | \hat{x}) \sim \text{BSC}(D)$.
- **·** Lego bricks:
	- 1. A (k_1, n, ϵ) P2P code (H_1, ϕ_1) for $\text{BSC}(\alpha)$, where $\alpha = \frac{\theta D}{1 2D}$ 2. A (k_2, n, δ) P2P code (H_2, ϕ_2) for

$$
q(x, v | \hat{x}) \triangleq p_{X, \widehat{X}}(\hat{x} \oplus v, x)
$$

s.t. for $X^n\stackrel{\rm iid}{\sim} \mathrm{Bern}(\theta)$, $V^n\stackrel{\rm iid}{\sim} \mathrm{Bern}(1/2)$ and $U^n=\phi_2\left(X^n,V^n\right)\oplus V^n$, we have $d_{TV}(p_{X^n, U^n}, \prod p_{X,\widehat{X}}) \leq \delta$ (*)

- 3. The two codes are nested s.t. $H_1 = \begin{bmatrix} H_2 \ H_1 \end{bmatrix}$ Q .
- 4. A random dither shared between encoder and decoder

- Lossy source coding problem:
	- Let $X^n \stackrel{\text{iid}}{\sim} \text{Bern}(\theta)$.
	- Goal: Compression of X^n with expected distortion $D \in [0, \theta]$.
- \bullet Approach: Target a conditional distribution $p(x | \hat{x}) \sim \text{BSC}(D)$.
- **·** Lego bricks:
	- 1. A (k_1, n, ϵ) P2P code (H_1, ϕ_1) for $\text{BSC}(\alpha)$, where $\alpha = \frac{\theta D}{1 2D}$ 2. A (k_2, n, δ) P2P code (H_2, ϕ_2) for

$$
q(x, v | \hat{x}) \triangleq p_{X, \widehat{X}}(\hat{x} \oplus v, x)
$$

s.t. for $X^n\stackrel{\rm iid}{\sim} \mathrm{Bern}(\theta)$, $V^n\stackrel{\rm iid}{\sim} \mathrm{Bern}(1/2)$ and $U^n=\phi_2\left(X^n,V^n\right)\oplus V^n$, we have $d_{TV}(p_{X^n, U^n}, \prod p_{X,\widehat{X}}) \leq \delta$ (*)

- 3. The two codes are nested s.t. $H_1 = \begin{bmatrix} H_2 \ H_1 \end{bmatrix}$ Q .
- 4. A random dither shared between encoder and decoder
- Note:
	- Channel q is symmetric with $\pi(x, v) = (x, v \oplus 1)$.

Coding scheme:

• Coding scheme:

- **Comments:**
	- V_2^n is a random dither shared between encoder and decoder.
	- Sequence U^n satisfies

$$
d_{\mathcal{TV}}(p_{X^n,U^n},\prod p_{X,\widehat{X}})\leq \delta
$$

- $H_1 = \begin{bmatrix} A_1 & B_1 \end{bmatrix}$, where B_1 is nonsingular.
- Rate of coding scheme is $R = \frac{k_2 k_1}{n}$.
- Expected distortion is

$$
\frac{1}{n}\mathsf{E}[d_H(X^n,\widehat{X}^n)] \leq D + \epsilon + 2\delta.
$$

• Coding scheme:

- Comments:
	- V_2^n is a random dither shared between encoder and decoder.
	- Sequence U^n satisfies

$$
d_{\mathcal{TV}}(p_{X^n,U^n},\prod p_{X,\widehat{X}})\leq \delta
$$

- $H_1 = \begin{bmatrix} A_1 & B_1 \end{bmatrix}$, where B_1 is nonsingular.
- Rate of coding scheme is $R = \frac{k_2 k_1}{n}$.
- Expected distortion is

$$
\frac{1}{n}\mathsf{E}[d_H(X^n,\widehat{X}^n)] \leq D + \epsilon + 2\delta.
$$

Simulation Results

- \bullet Bern(0.3) source
- Use polar codes

Simulation Results

- \bullet Bern(0.3) source
- Use polar codes

- 1. Rate achievability:
	- \exists a sequence of P2P codes for $BSC(\alpha)$ s.t. $\epsilon \to 0$ if and only if

$$
\frac{k_1}{n} < 1 - H(\alpha) = 1 - H(\widehat{X})
$$

- 1. Rate achievability:
	- \exists a sequence of P2P codes for BSC(α) s.t. $\epsilon \to 0$ if and only if

$$
\frac{k_1}{n} < 1 - H(\alpha) = 1 - H(\widehat{X})
$$

• \exists a sequence of P2P codes for channel q satisfying (*) s.t. $\delta \rightarrow 0$ if and only if

$$
\frac{k_2}{n} > 1 - H(\widehat{X} \mid X)
$$

[Cuff'13, Yassaee-Aref-Gohari'14]

- 1. Rate achievability:
	- \exists a sequence of P2P codes for $\text{BSC}(\alpha)$ s.t. $\epsilon \to 0$ if and only if

$$
\frac{k_1}{n} < 1 - H(\alpha) = 1 - H(\widehat{X})
$$

• \exists a sequence of P2P codes for channel q satisfying (*) s.t. $\delta \rightarrow 0$ if and only if

$$
\frac{k_2}{n} > 1 - H(\widehat{X} \mid X)
$$

[Cuff'13, Yassaee-Aref-Gohari'14]

Rate $R = \frac{k_2 - k_1}{n}$ can be made arbitrarily close to $I(X; \widehat{X}) = H(\theta) - H(D)$.

- 1. Rate achievability:
	- \exists a sequence of P2P codes for $BSC(\alpha)$ s.t. $\epsilon \rightarrow 0$ if and only if

$$
\frac{k_1}{n} < 1 - H(\alpha) = 1 - H(\widehat{X})
$$

• \exists a sequence of P2P codes for channel q satisfying (*) s.t. $\delta \rightarrow 0$ if and only if

$$
\frac{k_2}{n} > 1 - H(\widehat{X} \mid X)
$$

[Cuff'13, Yassaee-Aref-Gohari'14]

Rate $R = \frac{k_2 - k_1}{n}$ can be made arbitrarily close to $I(X; \widehat{X}) = H(\theta) - H(D)$.

2. Avoiding nestedness:

- An alternative construction allows to avoid the nestedness condition
- Less implementation-friendly
- Has a block-Markov structure (inputs to one coding block depend on previous blocks)

Beyond Lossy Source Coding: Coding over Networks

Beyond Lossy Source Coding: Coding over Networks

Beyond Lossy Source Coding: Coding over Networks

• All coding schemes can be constructed starting from P2P symmetric channel codes.

• All constructions are rate-optimal if the constituent Lego bricks are rate-optimal.