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Abstract—This paper presents a novel optimization framework
for solving active sensing problems in wireless communica-
tions, in which a base station equipped with massive multiple-
input multiple-output (MIMO) and a limited number of radio-
frequency chains aims to estimate the channel parameters of a
sensing target. Specifically, the receive beamforming matrix at
the BS is designed sequentially through optimizing the Bayesian
Cramér-Rao bound (B-CRB) metric at each sensing stage, while
satisfying a rank constraint and that the receive beamformers
must be implementable by analog phase shifters. The proposed
approach tackles this B-CRB minimization problem in the
Lagrangian dual domain. This dual optimization approach has
the advantage of reducing the dimension of the search space
from the number of antenna elements to the number of channel
parameters, which is typically much smaller for sparse mmWave
channels. We propose efficient numerical methods for obtaining
the primal solution from the dual and subsequentially setting the
phase shifts in each active sensing stage based on this approach.
Finally, we demonstrate the benefits of the proposed approach
as compared to existing beamforming strategies.

I. INTRODUCTION

The advent of millimeter-wave (mmWave) technology has
enabled the use of large-scale antenna arrays in wireless com-
munication systems, thereby addressing the ever-increasing de-
mand for high data rates through highly directional beamform-
ing. Nonetheless, constructing such directional beamformers
requires accurate estimates of the high-dimensional wireless
channels, which is particularly challenging in practical sys-
tems, especially when the number of radio-frequency (RF)
chains is smaller than the number of antenna elements. In
this paper, we consider the uplink directional beam alignment
problem for multiple-input multiple-output (MIMO) systems
that are RF-chain-limited. In such systems, it is desirable
that the beamformers can be realized using simple analog
components such as analog phase shifters [1], [2], which
typically adds even more complexity to the design problem.

In particular, we consider the setting in which a base
station (BS) equipped with massive MIMO and a limited
number of RF chains aims to acquire the channel in an
uplink mmWave environment, specifically the angles-of-arrival
(AoAs) of (potentially) multiple paths. Due to the constraint
on the number of RF chains, the BS can only make a low-
dimensional observation of the received pilot signals through
adjusting the phase shifts of a limited number of analog
beamformers (which is equal to the number of RF chains), but
can do so over multiple sensing stages in an adaptive manner.

Previous works have shown that adaptive sensing strategies
for AoA estimation can achieve higher estimation accuracy
with a much smaller number of pilot symbols as compared to
their non-adaptive counterparts [3]–[7]. The majority of these
adaptive beam alignment methods select the sensing vectors
from a pre-designed beamforming codebook [3], [4], e.g.,
based on bisection search over the desired range of AoAs, but
the performances of such methods are limited by the quality
of the codebook, which is not easy to design. On the other
hand, deep-learning-based solutions for active sensing have
also been proposed in the literature, e.g. [5]–[7], but these
methods require training a new model for each specific channel
model, and their generalizability to varying channel conditions
or varying number of sensing stages is challenging.

In this paper, we provide an analytical method for beam-
former design in active sensing, which does not utilize a pre-
designed beamforming codebook. Specifically, we explicitly
track the posterior distribution of the AoAs and design the
sensing beamforming vectors of the next stage by optimizing
a Bayesian Cramér–Rao bound (B-CRB) metric of the AoAs,
which is a lower bound on the mean-squared error (MSE) of
any unbiased estimator that utilizes the received symbols up
to that stage [8]–[12]. The B-CRB minimization problem is
not easy to solve numerically when there are multiple paths
and when the BS is equipped with a large number of antennas.
In this paper, we solve a relaxed version of this problem in
the Lagrangian dual domain. We show that the dual problem
simplifies to that of maximizing the beamforming gains in
some particular directions of interest, which can be found
analytically. The phase shifters can then be tuned based on the
phases of the resulting solution. This reduces the dimension
of the search space from the number of antenna elements to
one that depends only on the number of parameters to be
estimated, which is typically much smaller in sparse mmWave
channels. The technique used is the uplink counterpart of [12],
which uses Lagrangian duality to design transmit waveforms
in a downlink integrated sensing and communication (ISAC)
system.

II. SYSTEM MODEL

A. Active Sensing Model and Performance Metrics

Consider the uplink of a MIMO system, in which a BS
equipped with N antennas and M RF chains (M < N )
serves a single-antenna user, as illustrated in Fig. 1. In
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Fig. 1: Block diagram of a MIMO system with analog beamforming at the BS.

order to estimate the channel from the user to the BS, the
user sends T pilot symbols {xt}, t = 1, . . . , T , with power
P , i.e., xt =

√
P , ∀ t. Due to the limited number of RF

chains, the BS can only observe the pilot symbols through
a lower-dimensional analog combiner (i.e., sensing matrix)
Wt ∈ CN×M . In this case, the received signal at time t,
1 ≤ t ≤ T , can be expressed as

yt =
√
PWH

t h + WH
t zt, (1)

where:

• h = 1√
L

L∑̀
=1

α`a(φ`) is a vector of channel gains between

the user and the BS, with
– L being the number of reflected paths,
– α` ∼ CN (0, 1) being the complex fading coefficient

corresponding to `th path,
– φ` being the angle-of-arrival (AoA) of the re-

ceived signal from the `th path, and is assumed
to be uniformly distributed over a range of interest
[φmin, φmax],

– a(φ`) being the array response vector of a uniform
linear array with half-wavelength antenna spacing,
i.e.,

a(φ`) =
[
1 ejπ sinφ` · · · ej(N−1)π sinφ`

]T
,
(2)

• zt ∈ CN is a vector of i.i.d. zero-mean circularly-
symmetric complex Gaussians with unit variance.

Since the sensing vectors in an RF-chain-limited system are
typically implemented using a network of phase shifters, the
elements of Wt should satisfy a constant modulus constraint,
i.e., we should have |[Wt]i,j | = 1√

N
for each i, j, t.

Here, we consider an active sensing strategy in which Wt

can be designed in a sequential adaptive manner as a function
of previously received symbols, i.e.,

Wt = gt(y1:t−1,W1:t−1) (3)

for some sensing strategy gt : CM(t−1) × CN×M(t−1) →
CN×M that needs to satisfy a constant-modulus constraint.

After observing T symbols y1:T = (y1, . . . ,yT ), the BS
computes φ̂ = (φ̂1, . . . , φ̂L) as a function of all received
measurements and sensing matrices,

φ̂ = f(y1:T ,W1:T ), (4)

for some estimation scheme f : CMT × CN×MT → RL.
This active beamforming design problem is motivated by

a wide range of applications, including localization [13] and
downlink beamforming for time-division duplex (TDD) sys-
tems [14]. In this paper, we consider the setting in which the
channel fading coefficients α = (α1, . . . , αL) are regarded
as nuisance parameters, i.e., the goal is only to estimate the
AoAs.

The performance of the estimator is measured by the MSE,
defined as

MSE =
1

L
E
[
‖φ− φ̂‖2

]
, (5)

where the expectation is over the distribution of all stochastic
parameters of the model, i.e., φ, α, and z1:T .

B. Problem Formulation

Based on the above performance metric, the active sensing
problem for AoA estimation can be formulated as:

minimize
{gt(·,·)}Tt=1,f(·,·)

E
[
‖φ− φ̂‖2

]
(6a)

subject to Wt = gt(y1:t−1,W1:t−1), ∀ t = 1, . . . , T,
(6b)

φ̂ = f(y1:T ,W1:T ). (6c)

Solving the optimization problem (6) jointly over the functions
{gt(·, ·)}Tt=1 and f(·, ·) is challenging.

To make the problem more tractable, this paper considers
a Bayesian formulation in which a prior distribution of φ is
assumed at the beginning, and then the prior is updated in
each subsequent sensing stage. We adopt sensing strategies
{gBCRB
t (·, ·)}Tt=1 that minimize the Bayesian Cramér–Rao

bound (B-CRB) as a function of the prior at each sensing
stage t, then finally a minimum mean-squared error (MMSE)
estimator fMMSE(·, ·) to estimate the AoAs.

Unlike the classical CRB, which depends on the unknown
parameters φ [15], [16], the B-CRB provides a lower bound
on the MSE averaged over the prior distribution of φ [17].
Specifically, when applied to the active sensing problem, we
have that after observing the first t − 1 measurements, any
unbiased estimator φ̂ must satisfy

E
[
(φ− φ̂)(φ− φ̂)T

∣∣∣Y1:t−1

]
� J−1t (Wt), (7)



where � denotes inequality with respect to the positive
semidefinite (PSD) cone, Jt(Wt) ∈ CL×L is the Bayesian
Fisher information matrix (B-FIM) computed over the prior
distribution of φ, and the expectation is taken over the
joint distribution of (Yt,φ) given the measurements Y1:t−1
observed so far. This gives a lower bound on the MSE of
estimating φ in the t-th stage as

MSE(t) ≥ 1

L
E
[
tr
(
J−1t (Wt)

)]
, (8)

where the expectation on the right-hand side is over the
distribution of Y1:t−1.

This paper proposes to minimize a lower bound on the MSE
in each sensing stage given Y1:t−1. Specifically, we design
the sensing matrix in the t-th stage by solving the following
optimization problem:

minimize
Wt

tr
(
J−1t (Wt)

)
. (9)

In this way, the sensing matrix Wt is adapted based on the
previous received symbols. At the end of the t-th stage, we
compute the posterior distribution of φ and use it as the prior
distribution for the design of Wt+1 in the next stage.

For ease of implementation, the analog beamformers Wt

typically need to have constant modulus, so it can be imple-
mented using analog phase shifters. Because of this, we need
to impose an additional constraint

|[Wt]i,j | =
1√
N

∀ i, j. (10)

This constraint is not easy to deal with analytically. We begin
the exposition without this constraint, then subsequently obtain
a constant-modulus solution afterwards.

III. PROPOSED ACTIVE SENSING APPROACH

A. Derivation of B-FIM and Problem Reformulation
The B-CRB has been used in prior work for downlink

sensing beamforming optimization, e.g., [8], [12]. Following
similar derivations as in [8, Appendices A and B], the entries
of the B-FIM for the uplink channel model (1) can be
expressed as

[Jt(Wt)]i,j = −E
[
∂2 log f(yt,φ |y1:t−1)

∂φi∂φj

∣∣∣Y1:t−1

]
,
[
J
(D)
t (Wt)

]
i,j

+
[
J
(P )
t−1

]
i,j
,

(11)

where J
(D)
t (Wt) is the part of the B-FIM corresponding to

the data measurement model,[
J
(D)
t (Wt)

]
i,j

= −E
[
∂2 log f(yt |φ,y1:t−1)

∂φi∂φj

∣∣∣Y1:t−1

]
= 2P<

{
tr
(
E
[
ḣi(φ)ḣHj (φ)

∣∣Y1:t−1

]
Rt

)}
,

(12)

and J
(P )
t−1 is the part of the B-FIM corresponding to the

posterior distribution,[
J
(P )
t−1

]
i,j

= −E
[
∂2 log f(φ |y1:t−1)

∂φi∂φj

∣∣∣Y1:t−1

]

= 2P
∑t−1
τ=1<

{
tr
(
E
[
ḣi(φ)ḣHj (φ)

∣∣Y1:t−1

]
Rτ

)}
+ 2P

∑t−1
τ=1<

{
tr
(
E
[
h(φ)ḧHij (φ)

∣∣Y1:t−1

]
Rτ

)}
− 2
√
P
∑t−1
τ=1<

{
yHτ (WH

τ Wτ )−1WH
τ E

[
ḧij(φ)

∣∣Y1:t−1

]}
− E

[
∂2 log f(φ)
∂φi∂φj

∣∣∣Y1:t−1

]
, (13)

where Rτ = Wτ (WH
τ Wτ )−1WH

τ , for τ = 1, . . . , t, is
the orthogonal projection matrix on the range space of Wτ ,
ḣi(φ) = ∂h(φ)

∂φi
and ḧij(φ) = ∂2h(φ)

∂φi∂φj
. Note that J

(P )
t−1 does

not depend on Wt, and hence, can be viewed as a constant
matrix in the optimization problem (9).

We now make some observations about the optimization
problem (9). First, the B-FIM depends on Wt only through
Rt; in fact, when expressed as Jt(Rt), the B-FIM is an affine
function of Rt. So, without the additional constraint (10), the
optimization problem (9) can be rewritten as

minimize
Rt

tr
(
J−1t (Rt)

)
(14a)

subject to Rt is an orthogonal projection matrix, (14b)
rank(Rt) = M. (14c)

Second, the minimization of the trace of J−1t (Rt) in (14) has
a convenient reformulation using Schur complement [8], [16]:

minimize
Rt,d1,...,dL

L∑
`=1

d` (15a)

subject to
[
Jt(Rt) e`

eT` d`

]
� 0, ∀`, (15b)

Rt is an orthogonal projection matrix, (15c)
rank(Rt) = M, (15d)

where e` denotes the `-th column of the L×L identity matrix.
This reformulation of the problem is crucial for obtaining
an efficient numerical algorithm for solving (9). Note that,
compared to the downlink problem considered in [12], the
uplink B-CRB optimization problem (15) has an additional
(non-convex) orthogonal projection constraint (i.e., (15c)),
whereas the corresponding downlink problem has a power
constraint (which is linear in the optimization variable Rt).
The orthogonal projection constraint follows from the fact that
the sensing matrix Wt in the uplink model (1) affects the noise
covariance matrix, which is not the case for downlink.

B. B-CRB Optimization via Duality
Our method for solving (15) mirrors the solution to the

downlink counterpart in [12], while accounting for the ad-
ditional orthogonal projection constraint. In particular, we
show that (15) can be solved efficiently in the Lagrangian
dual domain, despite the non-convex constraints. The optimal
solution in the dual domain also gives rise to an optimal
primal solution for (9). Toward this end, we proceed as in [12]
and dualize (15) with respect to the constraint (15b). Let
Λ̃1, . . . , Λ̃L denote the dual variables defined as

Λ̃` =

[
Γ` −λ`
−λT` ν`

]
. (16)



Then, the dual problem can be written as

max
Λ̃`�0 ∀`

min
Rt∈R,
d1,...,dL

L∑
`=1

(
d`(1− ν`) + 2eT` λ` − tr(Γ`Jt(Rt))

)
,

(17)
where R denotes the constraints (15c) and (15d). Optimizing
over d1, . . . , dL, we conclude that ν∗` = 1 for all `. Then, the
dual problem becomes

max
Γ`�λ`λH

` ∀`
min

Rt∈R

L∑
`=1

(
2eT` λ` − tr(Γ`Jt(Rt))

)
, (18)

where the condition Γ` � λ`λ
H
` follows from the Schur

complement of the constraint Λ̃` � 0. Recall that

Jt(Rt) = J
(D)
t (Rt) + J

(P )
t−1, (19)

hence, solving the inner minimization in (18) is equivalent to
solving the following problem

max
Rt∈R

tr
(
AJ

(D)
t (Rt)

)
, (20)

where A ,
∑L
`=1 Γ` � 0. Note that, for any A � 0, we have

tr
(
AJ

(D)
t (Rt)

)
=

L∑
i,j=1

[A]i,j

[
J
(D)
t (Wt)

]
i,j

= 2P<

tr

 L∑
i,j=1

[A]i,j E
[
ḣi(φ)ḣHj (φ)

∣∣Y1:t−1

]
Rt


= 2P tr (GARt) , (21)

where
GA , E

[
Ḣ(φ)AḢH(φ)

∣∣Y1:t−1

]
, (22)

and Ḣ(φ) =
[
ḣ1(φ) · · · ḣL(φ)

]
. Since A � 0, we have

GA � 0. Thus, the inner minimization in (18) is equivalent
to

maximize
Rt

tr (GARt) (23a)

subject to Rt is an orthogonal projection matrix, (23b)
rank(Rt) = M. (23c)

The key observation is that (23) has the following analytic
solution based on the eigenvalue decomposition of GA:

R∗t = W̃∗
t (W̃

∗
t )
H , (24)

where W̃∗
t =

[
w̃∗1 . . . w̃∗M

]
, and w̃∗j is the eigenvector

of GA corresponding to the jth largest eigenvalue. Note that
since GA is a PSD matrix, the eigenvectors can be chosen to
be mutually orthogonal, in which case R∗t is an orthogonal
projection matrix. The dual problem (18) can then be written
as

maximize
Γ`�λ`λH

` ∀`

L∑
`=1

(
2eT` λ` − tr(Γ`J

(P )
t−1)

)
− 2P

M∑
m=1

µm (GA) ,

(25)
where µm(·) denotes the mth largest eigenvalue of a matrix.

Observe that, for any Γ` � λ`λ
H
` , we have that

tr(Γ`J
(P )
t−1) ≥ tr(λ`λ

H
` J

(P )
t−1) (since J

(P )
t−1 is a PSD matrix).

Also, we have A =
∑L
`=1 Γ` �

∑L
`=1 λ`λ

H
` , B, and hence,∑M

m=1 µm (GA) ≥
∑M
m=1 µm(GB). (26)

It follows that the optimal solution of (25) should satisfy A =
B, so that Γ∗` = λ∗` (λ

∗
` )
H for each `. Therefore, by denoting

Λ ,
[
λ1 · · · λL

]
∈ CL×L, we can write B = ΛΛH , and

the optimization problem (25) becomes

maximize
Λ

2tr(Λ)−tr
(
ΛHJ

(P )
t−1Λ

)
−2P

M∑
m=1

µm (GΛΛH ) .

(27)
The objective function in (27) is concave. The optimal Λ∗ can
be found efficiently using convex optimization methods.

The main conclusion here is that despite the non-convex or-
thogonal projection and rank constraints in the primal problem
(15), under mild conditions, a global optimum solution of (15)
can be obtained from the optimal dual solution Λ∗. This is due
to the fact that the optimization of the Lagrangian, which boils
down to the optimization problem (23), can be solved to global
optimality, despite the non-convex constraints. The primal
solution corresponding to the optimal Λ∗ can be obtained by
taking the eigenvectors of GΛ∗(Λ∗)H corresponding to the M
largest eigenvalues, calling them {w̃∗j}Mj=1, and stacking them
as

W̃∗
t =

[
w̃∗1 . . . w̃∗M

]
. (28)

The global optimality of the above solution can be established
whenever the dual variable Λ∗ that maximizes (27) is finite
(which is indeed the case as long as the prior distribution is not
degenerate), and whenever the primal solution corresponding
to the optimal Λ∗ is feasible and unique (which holds when
the eigenvalues of GΛ∗(Λ∗)H are distinct).

To understand the solution given by (28), recall from (23)
that solving the inner minimization in (18) is equivalent to
maximizing tr (GARt). This can be interpreted as maximiz-
ing the sum of beamforming powers along particular directions
given by the top-M eigenvectors of GA. In other words,
solving the dual problem allows to identify particular spatial
regions of interest, which, when probed, minimize a lower
bound on the error of AoA estimation.

In terms of computational complexity, note that the dual
problem is of dimension L × L, where L is the number of
channel parameters, while the primal problem has dimension
N ×M . Thus, the dual problem has much lower dimension.
Furthermore, obtaining the primal solution depends on finding
the top-M eigenvectors of an N × N matrix, which can be
done efficiently using the power iteration algorithm, especially
when the matrix has sparsity structure.

The development thus far does not yet take into account the
constant modulus constraint (10). When the constraint (10)
is included, we can no longer guarantee global optimality.
Instead, we propose the following heuristic of setting

[Wt]i,j =
1√
N

exp

{
j arg

([
W̃∗

t

]
i,j

)}
, (29)



where arg(·) denotes the phase of a complex number, and
W̃∗

t is the solution given by (28) for the problem without the
constant modulus constraint.

C. Kalman Filter Tracking of Channel Gains

Solving the dual problem (27) requires the computation of
the matrix GΛΛH given by

GΛΛH = E
[
Ḣ(φ)ΛΛHḢH(φ)

∣∣Y1:t−1

]
, (30)

where the expectation is over the posterior distribution of φ
given Y1:t−1. Computing this posterior distribution requires
averaging over the conditional distribution of the fading coef-
ficients α = (α1, . . . , αL) given the AoAs φ and the observed
sequence of measurements so far y1:t−1. The key observation
is that this conditional distribution is complex Gaussian, which
follows from the linearity of the measurement model (1)
with respect to α. The mean and covariance matrix of this
conditional distribution can be tracked using Kalman filtering.
In particular, let µ(t)

α|φ and Σ
(t)
α|φ denote respectively the mean

and covariance matrix of α given the AoAs φ and the first t
observed measurements y1:t. Then, we can write

µ
(t)
α|φ = µ

(t−1)
α|φ + Σ

(t−1)
αy|φ

(
Σ

(t−1)
y|φ

)−1 (
yt − µ(t−1)

y|φ

)
,

Σ
(t)
α|φ = Σ

(t−1)
α|φ − Σ

(t−1)
αy|φ

(
Σ

(t−1)
y|φ

)−1(
Σ

(t−1)
αy|φ

)H
,

(31)

where we have used

µ
(t−1)
y|φ = CH

φ,tµ
(t−1)
α|φ ,

Σ
(t−1)
αy|φ = Σ

(t−1)
α|φ Cφ,t,

Σ
(t−1)
y|φ = CH

φ,tΣ
(t−1)
α|φ Cφ,t + WH

t Wt,

(32)

and

Cφ,t =

√
P

L

aH(φ1)
...

aH(φL)

Wt. (33)

Since the channel gains are initially assumed to have a zero-
mean complex Gaussian distribution with unit variance, the
tracking of the mean and covariance matrix is initialized with
µ
(0)
α|φ = 0L×1 and Σ

(0)
α|φ = IL for each parameter vector

φ. Hence, if π(t)
φ denotes the posterior probability density

function of φ given the first t measurements y1:t, then π
(t)
φ

can be computed recursively as follows:

π
(t)
φ =

π
(t−1)
φ f(yt |φ,y1:t−1)∫

φ′
π
(t−1)
φ′ f(yt |φ′,y1:t−1)dφ′

, (34)

where the denominator in (34) is a normalization term
that does not depend on φ. Note that Yt |φ,Y1:t−1 ∼
CN

(
µ
(t−1)
y|φ ,Σ

(t−1)
y|φ

)
, where µ(t−1)

y|φ and Σ
(t−1)
y|φ are as com-

puted in (32). Finally, we point out that a similar Kalman filter
tracking procedure is developed in [5] and [18] for the special
case of a single-path channel (i.e., L = 1) and a BS equipped
with a single RF chain (i.e., M = 1).

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
active sensing strategy for AoA estimation as compared to sev-
eral existing analog beamforming strategies in the literature.

1) Compressed sensing with random beamforming: In this
baseline, the AoA estimation problem is formulated as an L-
sparse recovery problem. Specifically, the sensing matrices
for all T measurements are generated randomly satisfying
the constant-modulus constraint. Let W̄ = [W1, . . . ,WT ]
be the collection of all T sensing matrices. If the AoAs are
chosen from a grid set of size K that is large enough, and
denoting A = [a(φ1), . . . ,a(φK)] as the collection of all K
array response vectors, then the received baseband symbols in
the T time frames can be expressed as ȳ =

√
P
LW̄HAx+n,

where ȳ =
[
yH1 , . . . ,y

H
T

]H
, x is an unknown L-sparse vector,

and n is the effective Gaussian noise. Hence, the problem
is equivalent to recovering the support of x, which can be
done using compressed sensing methods, e.g., the orthogonal
matching pursuit (OMP) algorithm.

2) Coordinate descent: The B-CRB optimization prob-
lem (9) can be solved using the iterative coordinate descent
(CD) algorithm over the phase shifts of the beamformers. In
particular, by denoting [Wt]n,m = 1√

N
ej[θt]n,m for each entry

of the sensing matrix Wt, we can view (9) as an optimization
over the phase matrix θt. Using the bisection method, we can
minimize the objective function in (9) with respect to each
entry [θt]n,m, while holding the rest as fixed. Iterating this
approach over the coordinates of θt gives the CD solution.

3) Deep learning solutions: Several deep-learning-based
solutions have been proposed in the literature in order to
adaptively design sensing beamformers for AoA estimation. In
particular, the approach taken in [6] employs a long short-term
memory (LSTM) to model the temporal correlation between
the received symbols. The model is trained for a given number
of pilot symbols. In the following, we consider two cases of
this model: 1) when the model is trained for the exact number
of pilot symbols that are used in testing, and 2) when there
is a mismatch between the number of pilot symbols used in
training, and the number of pilot symbols used in testing.

The performance of the proposed active sensing strategy
is compared with the baseline strategies for a channel model
with L = 2 paths. The AoAs are assumed to be uniformly dis-
tributed over [φmin, φmax] = [−π3 ,

π
3 ], and the BS is equipped

with N = 32 antennas and M = 2 RF chains. The number
of measurements made is T = 7. For the compressed sensing
method and the computation of the posterior distribution of
the AoA’s, we use a grid set of size K = 1024.

Fig. 2 shows the plot of the average MSE for the different
beamforming strategies versus the SNR. The proposed active
sensing strategy achieves better AoA estimation performance
compared to the compressed sensing channel estimation ap-
proach (i.e., OMP) and the CD algorithm for optimizing the
B-CRB metric. However, it falls short compared to the LSTM
approach of [6] when the number of sensing stages used in
training and testing are perfectly matched. However, when
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Fig. 2: Average MSE versus SNR for a system model with N = 32 antennas,
L = 2 paths, T = 7 sensing stages, and M = 2 RF chains.

there is a mismatch between the number of sensing stages
used in training the LSTM model and the number of sensing
stages used in testing, the performance of the LSTM approach
degrades significantly, which highlights the drawback of the
learning-based solution for active sensing. In this case, the
analytic approach of this paper has a significant advantage.

Fig. 3 plots the beamforming pattern as well as the AoA
posterior distribution at the end of the t-th sensing stage when
the sensing vectors are designed using the proposed active
sensing strategy for an SNR = 25 dB. The true AoAs are φ1 =
−38.53◦ and φ2 = 41.85◦. We can see that as the number of
sensing stages increases, the marginal posterior distributions
converge to highly concentrated distributions with peaks at the
true AoAs. Moreover, the generated sensing vectors gradually
focus the energy in the direction of the true AoAs. Thus, the
designed beamformers have intuitive interpretation.

V. CONCLUSION

This paper develops an analytic approach for designing an
adaptive sequence of beamforming vectors for the angle-of-
arrival estimation problem in uplink massive MIMO systems
with limited number of RF chains based on optimizing the B-
CRB metric in each stage. The proposed adaptive beamform-
ing design is superior to conventional approaches and more
robust than the learning-based approach.
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