# **Noisy Sorting Capacity**

 ${\sf Ziao}\ {\sf Wang}^1 \qquad {\sf Nadim}\ {\sf Ghaddar}^2 \qquad {\sf Lele}\ {\sf Wang}^1$ 

<sup>1</sup>University of British Columbia <sup>2</sup>University of California, San Diego

Conference on Information Sciences and Systems (CISS) Princeton University

March 11, 2022

• Sorting in the presence of noise

- Sorting in the presence of noise
  - E.g. Ranking tennis players according to their strengths



- Sorting in the presence of noise
  - E.g. Ranking tennis players according to their strengths



- Sorting in the presence of noise
  - E.g. Ranking tennis players according to their strengths



- Sorting in the presence of noise
  - E.g. Ranking tennis players according to their strengths



- Sorting in the presence of noise
  - E.g. Ranking tennis players according to their strengths



- Sorting in the presence of noise
  - E.g. Ranking tennis players according to their strengths



- With some probability, a weaker player can still win over a stronger player.
- Applications
  - Ranking teams in a sports tournament
  - Recommender systems
  - Peer grading
  - o . . .

## **Noisy Sorting Problem**

• Let  $\theta_1, \ldots, \theta_n \in \mathbb{R}$ .

- Goal: Find  $\pi$  s.t.  $\theta_{\pi(1)} < \cdots < \theta_{\pi(n)}$  using pairwise comparisons.
  - At kth time step, submit query  $(U_k, V_k) \triangleq (\theta_i, \theta_j)$  for  $i \neq j$ .
  - Receive noisy response

$$Y_k = \mathbb{1}_{\{U_k < V_k\}} \oplus Z_k,$$

where  $Z_k \sim \text{Bern}(p)$ , for some fixed and known p.

- After *m* queries, compute estimate  $\hat{\pi}$  of  $\pi$ .
- Exact recovery of  $\pi$  is desired.

## **Noisy Sorting Problem**

• Let  $\theta_1, \ldots, \theta_n \in \mathbb{R}$ .

- Goal: Find  $\pi$  s.t.  $\theta_{\pi(1)} < \cdots < \theta_{\pi(n)}$  using pairwise comparisons.
  - At kth time step, submit query  $(U_k, V_k) \triangleq (\theta_i, \theta_j)$  for  $i \neq j$ .
  - Receive noisy response

$$Y_k = \mathbb{1}_{\{U_k < V_k\}} \oplus Z_k,$$

where  $Z_k \sim \text{Bern}(p)$ , for some fixed and known p.

- After *m* queries, compute estimate  $\hat{\pi}$  of  $\pi$ .
- Exact recovery of  $\pi$  is desired.
- Noiseless case (p = 0):
  - $m = \Theta(n \log n)$  is both sufficient and necessary.
  - E.g., merge sort algorithm attains lower bound.

## **Noisy Sorting Problem**

- Let  $\theta_1, \ldots, \theta_n \in \mathbb{R}$ .
- Goal: Find  $\pi$  s.t.  $\theta_{\pi(1)} < \cdots < \theta_{\pi(n)}$  using pairwise comparisons.
  - At kth time step, submit query  $(U_k, V_k) \triangleq (\theta_i, \theta_j)$  for  $i \neq j$ .
  - Receive noisy response

$$Y_k = \mathbb{1}_{\{U_k < V_k\}} \oplus Z_k,$$

where  $Z_k \sim \text{Bern}(p)$ , for some fixed and known p.

- After *m* queries, compute estimate  $\hat{\pi}$  of  $\pi$ .
- Exact recovery of  $\pi$  is desired.
- Noiseless case (*p* = 0):
  - $m = \Theta(n \log n)$  is both sufficient and necessary.
  - E.g., merge sort algorithm attains lower bound.
- Noisy case (*p* > 0):
  - $m = \Theta(n \log n)$  is both sufficient and necessary.
  - E.g., algorithm in [1] attains lower bound.

<sup>&</sup>lt;sup>1</sup>U. Feige, P. Raghavan, D. Peleg, and E. Upfal. "Computing with Noisy Information". In: SIAM J. Comput., 1994.

- Active ranking
  - $p = p_{i,j}$  is query-dependent and unknown [2]–[6].

<sup>&</sup>lt;sup>2</sup>R. Heckel, N. B. Shah, K. Ramchandran, and M. J. Wainwright, "Active ranking from pairwise comparisons and when parametric assumptions do not help," The Annals of Statistics, 2019.

<sup>&</sup>lt;sup>3</sup>N. B. Shah and M. J. Wainwright, "Simple, robust and optimal ranking from pairwise comparisons," Journal of Machine Learning Research, 2018.

<sup>&</sup>lt;sup>4</sup>M. Falahatgar, A. Orlitsky, V. Pichapati, and A. T. Suresh, "Maximum selection and ranking under noisy comparisons," in Proceedings of ICML, 2017.

<sup>&</sup>lt;sup>5</sup>S. Mohajer, C. Suh, and A. Elmahdy, "Active learning for top-k rank aggregation from noisy comparisons," in Proceedings of ICML, 2017.

<sup>&</sup>lt;sup>6</sup>A. Agarwal, S. Agarwal, S. Assadi, and S. Khanna, "Learning with limited rounds of adaptivity: Coin tossing, multi-armed bandits, and ranking from pairwise comparisons," in Proceedings of COLT, 2017.

- Active ranking
  - $p = p_{i,j}$  is query-dependent and unknown [2]–[6].
- Bradley–Terry–Luce Model
  - $p_{i,j}$  is a function of the scores of elements i and j [7]-[8]

<sup>&</sup>lt;sup>2</sup>R. Heckel, N. B. Shah, K. Ramchandran, and M. J. Wainwright, "Active ranking from pairwise comparisons and when parametric assumptions do not help," The Annals of Statistics, 2019.

<sup>&</sup>lt;sup>3</sup>N. B. Shah and M. J. Wainwright, "Simple, robust and optimal ranking from pairwise comparisons," Journal of Machine Learning Research, 2018.

<sup>&</sup>lt;sup>4</sup>M. Falahatgar, A. Orlitsky, V. Pichapati, and A. T. Suresh, "Maximum selection and ranking under noisy comparisons," in Proceedings of ICML, 2017.

<sup>&</sup>lt;sup>5</sup>S. Mohajer, C. Suh, and A. Elmahdy, "Active learning for top-k rank aggregation from noisy comparisons," in Proceedings of ICML, 2017.

<sup>&</sup>lt;sup>6</sup>A. Agarwal, S. Agarwal, S. Assadi, and S. Khanna, "Learning with limited rounds of adaptivity: Coin tossing, multi-armed bandits, and ranking from pairwise comparisons," in Proceedings of COLT, 2017.

<sup>&</sup>lt;sup>7</sup>W. Ren, J. Liu, and N. B. Shroff, "Pac ranking from pairwise and listwise queries: Lower bounds and upper bounds," 2018.

<sup>&</sup>lt;sup>8</sup>M. Ajtai, V. Feldman, A. Hassidim, and J. Nelson, "Sorting and selection with imprecise comparisons," in ACM Transactions on Algorithms, 2009.

- Active ranking
  - $p = p_{i,j}$  is query-dependent and unknown [2]–[6].
- Bradley–Terry–Luce Model
  - p<sub>i,j</sub> is a function of the scores of elements i and j [7]-[8]
- Approximate permutation recovery
  - Distance metric between permutations is to be minimized [9]-[10]

<sup>9</sup>M. Braverman and E. Mossel, "Sorting from noisy information," 2009.

<sup>10</sup>N. Ailon, M. Charikar, and A. Newman, "Aggregating inconsistent information: Ranking and clustering," Journal of the ACM, 2008.

<sup>&</sup>lt;sup>2</sup>R. Heckel, N. B. Shah, K. Ramchandran, and M. J. Wainwright, "Active ranking from pairwise comparisons and when parametric assumptions do not help," The Annals of Statistics, 2019.

<sup>&</sup>lt;sup>3</sup>N. B. Shah and M. J. Wainwright, "Simple, robust and optimal ranking from pairwise comparisons," Journal of Machine Learning Research, 2018.

<sup>&</sup>lt;sup>4</sup>M. Falahatgar, A. Orlitsky, V. Pichapati, and A. T. Suresh, "Maximum selection and ranking under noisy comparisons," in Proceedings of ICML, 2017.

<sup>&</sup>lt;sup>5</sup>S. Mohajer, C. Suh, and A. Elmahdy, "Active learning for top-k rank aggregation from noisy comparisons," in Proceedings of ICML, 2017.

<sup>&</sup>lt;sup>6</sup>A. Agarwal, S. Agarwal, S. Assadi, and S. Khanna, "Learning with limited rounds of adaptivity: Coin tossing, multi-armed bandits, and ranking from pairwise comparisons," in Proceedings of COLT, 2017.

<sup>&</sup>lt;sup>7</sup>W. Ren, J. Liu, and N. B. Shroff, "Pac ranking from pairwise and listwise queries: Lower bounds and upper bounds," 2018.

<sup>&</sup>lt;sup>8</sup>M. Ajtai, V. Feldman, A. Hassidim, and J. Nelson, "Sorting and selection with imprecise comparisons," in ACM Transactions on Algorithms, 2009.

- Active ranking
  - $p = p_{i,j}$  is query-dependent and unknown [2]–[6].
- Bradley–Terry–Luce Model
  - p<sub>i,j</sub> is a function of the scores of elements i and j [7]-[8]
- Approximate permutation recovery
  - Distance metric between permutations is to be minimized [9]-[10]

#### Only the order of the query complexity is considered in prior work.

<sup>&</sup>lt;sup>2</sup>R. Heckel, N. B. Shah, K. Ramchandran, and M. J. Wainwright, "Active ranking from pairwise comparisons and when parametric assumptions do not help," The Annals of Statistics, 2019.

<sup>&</sup>lt;sup>3</sup>N. B. Shah and M. J. Wainwright, "Simple, robust and optimal ranking from pairwise comparisons," Journal of Machine Learning Research, 2018.

<sup>&</sup>lt;sup>4</sup>M. Falahatgar, A. Orlitsky, V. Pichapati, and A. T. Suresh, "Maximum selection and ranking under noisy comparisons," in Proceedings of ICML, 2017.

<sup>&</sup>lt;sup>5</sup>S. Mohajer, C. Suh, and A. Elmahdy, "Active learning for top-k rank aggregation from noisy comparisons," in Proceedings of ICML, 2017.

<sup>&</sup>lt;sup>6</sup>A. Agarwal, S. Agarwal, S. Assadi, and S. Khanna, "Learning with limited rounds of adaptivity: Coin tossing, multi-armed bandits, and ranking from pairwise comparisons," in Proceedings of COLT, 2017.

<sup>&</sup>lt;sup>7</sup>W. Ren, J. Liu, and N. B. Shroff, "Pac ranking from pairwise and listwise queries: Lower bounds and upper bounds," 2018.

<sup>&</sup>lt;sup>8</sup>M. Ajtai, V. Feldman, A. Hassidim, and J. Nelson, "Sorting and selection with imprecise comparisons," in ACM Transactions on Algorithms, 2009.

<sup>&</sup>lt;sup>9</sup>M. Braverman and E. Mossel, "Sorting from noisy information," 2009.

<sup>&</sup>lt;sup>10</sup>N. Ailon, M. Charikar, and A. Newman, "Aggregating inconsistent information: Ranking and clustering," Journal of the ACM, 2008.

**Question:** What is the maximum ratio  $\frac{n \log n}{m}$  such that  $P\{\hat{\pi} = \pi\} = 1$  asymptotically?

**Question:** What is the maximum ratio  $\frac{n \log n}{m}$  such that  $P{\hat{\pi} = \pi} = 1$  asymptotically?

- Sorting rate:  $R = \frac{n \log n}{m}$ .
- (R, n) noisy sorting code consists of
  - A causal protocol  $\{f_k\}_{k=1}^m$  for determining the queries

$$(U_k, V_k) = f_k(Y^{k-1}, U^{k-1}, V^{k-1}).$$

• An estimator 
$$\hat{\pi} = \hat{\pi}(Y^m, U^m, V^m)$$

**Question:** What is the maximum ratio  $\frac{n \log n}{m}$  such that  $P{\hat{\pi} = \pi} = 1$  asymptotically?

- Sorting rate:  $R = \frac{n \log n}{m}$ .
- (R, n) noisy sorting code consists of
  - A causal protocol  $\{f_k\}_{k=1}^m$  for determining the queries

$$(U_k, V_k) = f_k(Y^{k-1}, U^{k-1}, V^{k-1}).$$

• An estimator 
$$\hat{\pi} = \hat{\pi}(Y^m, U^m, V^m)$$

• R is achievable if  $\exists$  a sequence of (R, n) noisy sorting codes s.t.

$$\lim_{n\to\infty}\max_{\pi}\mathsf{P}\{\hat{\pi}\neq\pi\}=\mathsf{0}.$$

**Question:** What is the maximum ratio  $\frac{n \log n}{m}$  such that  $P{\hat{\pi} = \pi} = 1$  asymptotically?

- Sorting rate:  $R = \frac{n \log n}{m}$ .
- (R, n) noisy sorting code consists of
  - A causal protocol  $\{f_k\}_{k=1}^m$  for determining the queries

$$(U_k, V_k) = f_k(Y^{k-1}, U^{k-1}, V^{k-1}).$$

• An estimator  $\hat{\pi} = \hat{\pi}(Y^m, U^m, V^m)$ 

• R is achievable if  $\exists$  a sequence of (R, n) noisy sorting codes s.t.

 $\lim_{n\to\infty}\max_{\pi}\mathsf{P}\{\hat{\pi}\neq\pi\}=\mathsf{0}.$ 

• Noisy sorting capacity C(p): supremum of all achievable sorting rates R.

**Question:** What is the maximum ratio  $\frac{n \log n}{m}$  such that  $P{\hat{\pi} = \pi} = 1$  asymptotically?

- Sorting rate:  $R = \frac{n \log n}{m}$ .
- (R, n) noisy sorting code consists of
  - A causal protocol  $\{f_k\}_{k=1}^m$  for determining the queries

$$(U_k, V_k) = f_k(Y^{k-1}, U^{k-1}, V^{k-1}).$$

• An estimator  $\hat{\pi} = \hat{\pi}(Y^m, U^m, V^m)$ 

• R is achievable if  $\exists$  a sequence of (R, n) noisy sorting codes s.t.

 $\lim_{n\to\infty}\max_{\pi}\mathsf{P}\{\hat{\pi}\neq\pi\}=\mathsf{0}.$ 

• Noisy sorting capacity C(p): supremum of all achievable sorting rates R.

In this work, we give upper and lower bounds on C(p).

| ng | had | d | lar | 01 | icso | l ec | h |
|----|-----|---|-----|----|------|------|---|
|    |     |   |     |    |      |      |   |

#### Theorem 1 (Converse)

Any sequence of (R, n) noisy sorting codes with  $\lim_{n \to \infty} \max_{\pi} P\{\hat{\pi} \neq \pi\} = 0$  satisfies that

$$R < 1 - H(p),$$

where  $H(\cdot)$  denotes the binary entropy function. That is,  $C(p) \leq 1 - H(p)$ .

#### **Theorem 2 (Achievability)**

Any sorting rate

$$R < \frac{1}{2} - \frac{1}{2} \log \left(1 + 2\sqrt{p(1-p)}\right)$$

is achievable for the noisy sorting problem. That is,  $C(p) \geq \frac{1}{2} - \frac{1}{2} \log \left(1 + 2\sqrt{p(1-p)}\right)$ .



<sup>1</sup>U. Feige, P. Raghavan, D. Peleg, and E. Upfal. "Computing with Noisy Information". In: SIAM J. Comput., 1994.

#### Theorem 1 (Converse)

Any sequence of (R, n) noisy sorting codes with  $\lim_{n \to \infty} \max_{\pi} P\{\hat{\pi} \neq \pi\} = 0$  satisfies that

$$R<1-H(p),$$

where  $H(\cdot)$  denotes the binary entropy function. That is,  $C(p) \leq 1 - H(p)$ .

#### Theorem 2 (Achievability)

Any sorting rate

$$R < rac{1}{2} - rac{1}{2}\log\left(1+2\sqrt{p(1-p)}
ight)$$

is achievable for the noisy sorting problem. That is,  $C(p) \geq \frac{1}{2} - \frac{1}{2} \log \left(1 + 2\sqrt{p(1-p)}\right)$ .

#### Theorem 1 (Converse)

Any sequence of (R, n) noisy sorting codes with  $\lim_{n \to \infty} \max_{\pi} P\{\hat{\pi} \neq \pi\} = 0$  satisfies that

$$R < 1 - H(p),$$

where  $H(\cdot)$  denotes the binary entropy function. That is,  $C(p) \leq 1 - H(p)$ .

- Each query gives at most 1 H(p) bits of information.
- Need to have  $m(1 H(p)) > \log n!$

#### Theorem 2 (Achievability)

Any sorting rate

$$R < \frac{1}{2} - \frac{1}{2}\log\left(1 + 2\sqrt{p(1-p)}\right)$$

is achievable for the noisy sorting problem. That is,  $C(p) \geq \frac{1}{2} - \frac{1}{2} \log \left(1 + 2\sqrt{p(1-p)}\right)$ .

#### Theorem 1 (Converse)

Any sequence of (R, n) noisy sorting codes with  $\lim_{n \to \infty} \max_{\pi} P\{\hat{\pi} \neq \pi\} = 0$  satisfies that

$$R<1-H(p),$$

where  $H(\cdot)$  denotes the binary entropy function. That is,  $C(p) \leq 1 - H(p)$ .

- Each query gives at most 1 H(p) bits of information.
- Need to have  $m(1 H(p)) > \log n!$

#### Theorem 2 (Achievability)

Any sorting rate

$$R < rac{1}{2} - rac{1}{2}\log\left(1+2\sqrt{p(1-p)}
ight)$$

is achievable for the noisy sorting problem. That is,  $C(p) \geq \frac{1}{2} - \frac{1}{2} \log \left(1 + 2\sqrt{p(1-p)}\right)$ .

- Key ingredients:
  - Burnashev-Zigangirov (BZ) algorithm for noisy searching
  - Insertion sort

nghaddar@ucsd.edu

## **Detour: Noisy Searching Problem**

- Let  $(\tilde{\theta}_0, \dots, \tilde{\theta}_n) \in \mathbb{\bar{R}}^{n+1}$  be sorted with  $\tilde{\theta}_0 = -\infty$  and  $\tilde{\theta}_n = \infty$ .
- Goal: Identify position  $i^*$  of a given  $\tilde{\theta} \in \mathbb{R}$  s.t.  $\tilde{\theta}_{i^*} < \tilde{\theta} < \tilde{\theta}_{i^*+1}$ .
  - Query  $\tilde{U}_k \triangleq \tilde{\theta}_j$  for some j.
  - Receive noisy response  $\tilde{Y}_k = \mathbb{1}_{\{\tilde{U}_k < \tilde{\theta}\}} \oplus \tilde{Z}_k$ , where  $\tilde{Z}_k \sim \text{Bern}(p)$ .
  - After  $\tilde{m}$  queries, compute estimate  $\hat{i}^*$  of  $i^*$ .

## **Detour: Noisy Searching Problem**

• Let 
$$(\tilde{\theta}_0, \dots, \tilde{\theta}_n) \in \mathbb{R}^{n+1}$$
 be sorted with  $\tilde{\theta}_0 = -\infty$  and  $\tilde{\theta}_n = \infty$ .

- Goal: Identify position  $i^*$  of a given  $\tilde{\theta} \in \mathbb{R}$  s.t.  $\tilde{\theta}_{i^*} < \tilde{\theta} < \tilde{\theta}_{i^*+1}$ .
  - Query  $\tilde{U}_k \triangleq \tilde{\theta}_j$  for some j.
  - Receive noisy response  $\tilde{Y}_k = \mathbb{1}_{\{\tilde{U}_k < \tilde{\theta}\}} \oplus \tilde{Z}_k$ , where  $\tilde{Z}_k \sim \text{Bern}(p)$ .
  - After  $\tilde{m}$  queries, compute estimate  $\hat{i}^*$  of  $i^*$ .

• Burnashev-Zigangirov algorithm: searching using posteriors of intermediate intervals

- Let  $I_i = (\tilde{\theta}_{i-1}, \tilde{\theta}_i)$  for each  $i \in [n]$ .
- Update posterior of each interval I<sub>i</sub>

$$q_k(i) \triangleq \mathsf{P}\{\theta \in I_i \mid \tilde{Y}_1, \dots, \tilde{Y}_k, \tilde{U}_1, \dots, \tilde{U}_k\},\$$

for  $k \in [\tilde{m}]$  and  $i \in [n]$ , where  $q_0(i) = \frac{1}{n}$  for all i.

## **Detour: Noisy Searching Problem**

• Let 
$$(\tilde{\theta}_0, \dots, \tilde{\theta}_n) \in \mathbb{R}^{n+1}$$
 be sorted with  $\tilde{\theta}_0 = -\infty$  and  $\tilde{\theta}_n = \infty$ .

- Goal: Identify position  $i^*$  of a given  $\tilde{\theta} \in \mathbb{R}$  s.t.  $\tilde{\theta}_{i^*} < \tilde{\theta} < \tilde{\theta}_{i^*+1}$ .
  - Query  $\tilde{U}_k \triangleq \tilde{\theta}_j$  for some j.
  - Receive noisy response  $\tilde{Y}_k = \mathbb{1}_{\{\tilde{U}_k < \tilde{\theta}\}} \oplus \tilde{Z}_k$ , where  $\tilde{Z}_k \sim \text{Bern}(p)$ .
  - After  $\tilde{m}$  queries, compute estimate  $\hat{i}^*$  of  $i^*$ .

• Burnashev-Zigangirov algorithm: searching using posteriors of intermediate intervals

- Let  $I_i = (\tilde{\theta}_{i-1}, \tilde{\theta}_i)$  for each  $i \in [n]$ .
- Update posterior of each interval I<sub>i</sub>

$$q_k(i) \triangleq \mathsf{P}\{\theta \in I_i \mid \tilde{Y}_1, \dots, \tilde{Y}_k, \tilde{U}_1, \dots, \tilde{U}_k\},\$$

for  $k \in [\tilde{m}]$  and  $i \in [n]$ , where  $q_0(i) = \frac{1}{n}$  for all i.

• Let j(k) be index that bisects the posteriors, i.e.,

$$\sum_{i=1}^{j(k)-1} q_k(i) \leq rac{1}{2} \qquad ext{and} \qquad \sum_{i=1}^{j(k)} q_k(i) > rac{1}{2}$$

- Choose  $U_{k+1}$  randomly among  $\{\tilde{\theta}_{j(k)-1}, \tilde{\theta}_{j(k)}\}$ .
- Repeat for  $\tilde{m}$  queries, and output the posterior median index  $\hat{i}^* \triangleq j(\tilde{m})$ .
- We have

$$\mathsf{P}\{\tilde{\theta} \notin I_{\hat{i}^*}\} \leq (n-1) \left(\frac{1}{2} + \sqrt{p(1-p)}\right)^m$$

• Can use BZ algorithm with insertion sort



• Can use BZ algorithm with insertion sort



• Insert  $\theta_2$  in its estimated position w.r.t.  $\theta_1$  using BZ.

• Can use BZ algorithm with insertion sort



- Insert  $\theta_2$  in its estimated position w.r.t.  $\theta_1$  using BZ.
- Insert  $\theta_3$  in its estimated position w.r.t.  $\{\theta_1, \theta_2\}$  using BZ.

• Can use BZ algorithm with insertion sort



- Insert  $\theta_2$  in its estimated position w.r.t.  $\theta_1$  using BZ.
- Insert  $\theta_3$  in its estimated position w.r.t.  $\{\theta_1, \theta_2\}$  using BZ.
- Insert  $\theta_4$  in its estimated position w.r.t.  $\{\theta_1, \theta_2, \theta_3\}$  using BZ.

• • • •

#### • Can use BZ algorithm with insertion sort



- Insert  $\theta_2$  in its estimated position w.r.t.  $\theta_1$  using BZ.
- Insert  $\theta_3$  in its estimated position w.r.t.  $\{\theta_1, \theta_2\}$  using BZ.
- Insert  $\theta_4$  in its estimated position w.r.t.  $\{\theta_1, \theta_2, \theta_3\}$  using BZ.
- ο ...
- It can be shown that

$$\mathsf{P}\{\hat{\pi} \neq \pi\} \le \mathsf{n}^2 \left(\frac{1}{2} + \sqrt{\mathsf{p}(1-\mathsf{p})}\right)^{\frac{m}{n-1}}$$

 $\Rightarrow$  any sorting rate  $R < \frac{1}{2} - \frac{1}{2} \log \left(1 + 2\sqrt{p(1-p)}\right)$  is achievable.

#### **Final Remarks**

- Extensions:
  - Permutation search algorithms to fully characterize the noisy sorting capacity
  - Unknown p and/or query-dependent p
- Arxiv version: https://arxiv.org/abs/2202.01446
- Any questions?