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Motivation

Sorting in the presence of noise

E.g. Ranking tennis players according to their strengths

With some probability, a weaker player can still win over a stronger player.

Applications

Ranking teams in a sports tournament
Recommender systems
Peer grading
· · ·
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Noisy Sorting Problem

Let θ1, . . . , θn ∈ R.

Goal: Find π s.t. θπ(1) < · · · < θπ(n) using pairwise comparisons.

At kth time step, submit query (Uk ,Vk ) ≜ (θi , θj ) for i ̸= j .
Receive noisy response

Yk = 1{Uk<Vk} ⊕ Zk ,

where Zk ∼ Bern(p), for some fixed and known p.
After m queries, compute estimate π̂ of π.
Exact recovery of π is desired.

Noiseless case (p = 0):
m = Θ(n log n) is both sufficient and necessary.
E.g., merge sort algorithm attains lower bound.

Noisy case (p > 0):
m = Θ(n log n) is both sufficient and necessary.
E.g., algorithm in [1] attains lower bound.

1U. Feige, P. Raghavan, D. Peleg, and E. Upfal. “Computing with Noisy Information”. In: SIAM J. Comput., 1994.
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Related Work

Active ranking
p = pi,j is query-dependent and unknown [2]–[6].

Bradley–Terry–Luce Model
pi,j is a function of the scores of elements i and j [7]–[8]

Approximate permutation recovery
Distance metric between permutations is to be minimized [9]–[10]

Only the order of the query complexity is considered in prior work.

2R. Heckel, N. B. Shah, K. Ramchandran, and M. J. Wainwright, “Active ranking from pairwise comparisons and when parametric assumptions do not
help,” The Annals of Statistics, 2019.

3N. B. Shah and M. J. Wainwright, “Simple, robust and optimal ranking from pairwise comparisons,” Journal of Machine Learning Research, 2018.
4M. Falahatgar, A. Orlitsky, V. Pichapati, and A. T. Suresh, “Maximum selection and ranking under noisy comparisons,” in Proceedings of ICML, 2017.
5S. Mohajer, C. Suh, and A. Elmahdy, “Active learning for top-k rank aggregation from noisy comparisons,” in Proceedings of ICML, 2017.
6A. Agarwal, S. Agarwal, S. Assadi, and S. Khanna, “Learning with limited rounds of adaptivity: Coin tossing, multi-armed bandits, and ranking from

pairwise comparisons,” in Proceedings of COLT, 2017.

7W. Ren, J. Liu, and N. B. Shroff, “Pac ranking from pairwise and listwise queries: Lower bounds and upper bounds,” 2018.
8M. Ajtai, V. Feldman, A. Hassidim, and J. Nelson, “Sorting and selection with imprecise comparisons,” in ACM Transactions on Algorithms, 2009.
9M. Braverman and E. Mossel, “Sorting from noisy information,” 2009.

10N. Ailon, M. Charikar, and A. Newman, “Aggregating inconsistent information: Ranking and clustering,” Journal of the ACM, 2008.
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Proposed Framework

Question: What is the maximum ratio n log n
m

such that P{π̂ = π} = 1 asymptotically?

Sorting rate: R = n log n
m

.

(R, n) noisy sorting code consists of
A causal protocol {fk}mk=1 for determining the queries

(Uk ,Vk ) = fk (Y
k−1,Uk−1,V k−1).

An estimator π̂ = π̂(Ym,Um,Vm)

R is achievable if ∃ a sequence of (R, n) noisy sorting codes s.t.

lim
n→∞

max
π

P{π̂ ̸= π} = 0.

Noisy sorting capacity C(p): supremum of all achievable sorting rates R.

In this work, we give upper and lower bounds on C(p).
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Main Results

Theorem 1 (Converse)

Any sequence of (R, n) noisy sorting codes with lim
n→∞

maxπ P{π̂ ̸= π} = 0 satisfies that

R < 1− H(p),

where H(·) denotes the binary entropy function. That is, C(p) ≤ 1− H(p).

Theorem 2 (Achievability)

Any sorting rate

R <
1

2
− 1

2
log

(
1 + 2

√
p(1− p)

)
is achievable for the noisy sorting problem. That is, C(p) ≥ 1

2
− 1

2
log

(
1 + 2

√
p(1− p)

)
.
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Detour: Noisy Searching Problem

Let (θ̃0, . . . , θ̃n) ∈ R̄n+1 be sorted with θ̃0 = −∞ and θ̃n = ∞.

Goal: Identify position i∗ of a given θ̃ ∈ R s.t. θ̃i∗ < θ̃ < θ̃i∗+1.
Query Ũk ≜ θ̃j for some j .

Receive noisy response Ỹk = 1{Ũk<θ̃} ⊕ Z̃k , where Z̃k ∼ Bern(p).

After m̃ queries, compute estimate î∗ of i∗.

Burnashev-Zigangirov algorithm: searching using posteriors of intermediate intervals
Let Ii = (θ̃i−1, θ̃i ) for each i ∈ [n].
Update posterior of each interval Ii

qk (i) ≜ P{θ ∈ Ii | Ỹ1, . . . , Ỹk , Ũ1, . . . , Ũk},

for k ∈ [m̃] and i ∈ [n], where q0(i) =
1
n
for all i .

Let j(k) be index that bisects the posteriors, i.e.,

j(k)−1∑
i=1

qk (i) ≤
1

2
and

j(k)∑
i=1

qk (i) >
1

2

Choose Uk+1 randomly among {θ̃j(k)−1, θ̃j(k)}.
Repeat for m̃ queries, and output the posterior median index î∗ ≜ j(m̃).
We have

P{θ̃ /∈ Iî∗} ≤ (n − 1)

(
1

2
+

√
p(1− p)

)m̃
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Back to Noisy Sorting Problem

Can use BZ algorithm with insertion sort

θ1 θ3 θ4 θnθ2

Insert θ2 in its estimated position w.r.t. θ1 using BZ.

Insert θ3 in its estimated position w.r.t. {θ1, θ2} using BZ.

Insert θ4 in its estimated position w.r.t. {θ1, θ2, θ3} using BZ.

· · ·
It can be shown that

P{π̂ ̸= π} ≤ n2

(
1

2
+

√
p(1− p)

) m
n−1

⇒ any sorting rate R < 1
2
− 1

2
log

(
1 + 2

√
p(1− p)

)
is achievable.
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Final Remarks

Extensions:
Permutation search algorithms to fully characterize the noisy sorting capacity
Unknown p and/or query-dependent p

Arxiv version: https://arxiv.org/abs/2202.01446

Any questions?
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